全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

矿化柞蚕丝胶膜表面粗糙度的调控及其对骨髓间充质干细胞生长行为的影响
Regulating of surface roughness of mineralized Antheraea pernyi silk sericin film and its effects on growth behavior of bone mesenchymal stem cells

DOI: 10.13801/j.cnki.fhclxb.20150108.001

Keywords: 柞蚕丝胶,表面粗糙度,生物矿化,组织工程,骨髓间充质干细胞,细胞相容性
Antheraea pernyi silk sericin
,surface roughness,biomineralization,tissue engineering,bone mesenchymal stem cells,cytocompatibility

Full-Text   Cite this paper   Add to My Lib

Abstract:

References

[1]  Jalali S, Pozo M A, Chen K D, et al. Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands[J]. Proceedings of the National Academy of Sciences, 2001, 98(3): 1042-1046.
[2]  Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds[J]. Trends in Biotechnology, 2012, 30(10): 546-554.
[3]  Mandal B B, Grinberg A, Gil E S, et al. High-strength silk protein scaffolds for bone repair[J]. Proceedings of the National Academy of Sciences, 2012, 109(20): 7699-7704.
[4]  Lu L, You W W, Wang Y J, et al. Surface modification of bioactive glass and the preliminary study on the cell biocompatibility[J]. Acta Materiae Compositae Sinica, 2011, 28(1): 114-118 (in Chinese). 卢玲, 游文玮, 王迎军, 等. 生物活性玻璃的表面修饰及其细胞相容性[J]. 复合材料学报, 2011, 28(1): 114-118.
[5]  Zhang L L, Li H J, Li K Z, et al. Effect of surface roughness of carbon/carbon composites on osteoblasts growth behaviour[J]. Journal of Inorganic Materials, 2008, 23(2): 341-345 (in Chinese). 张磊磊, 李贺军, 李克智, 等. 碳/碳复合材料表面粗糙度对成骨细胞生长行为的影响[J]. 无机材料学报, 2008, 23(2): 341-345.
[6]  Karbasi M, Ghavidel M Z, Saidi A, et al. Comparison between tribological behaviour of HVOF coatings produced from conventional Ni + TiC powder mixture and Ni-TiC, Ni-(Ti, W) C composite powders[J]. Surface Engineering, 2012, 28(2): 155-163.
[7]  Costa-Rodrigues J, Fernandes A, Lopes M A, et al. Hydroxyapatite surface roughness: Complex modulation of the osteoclastogenesis of human precursor cells[J]. Acta Biomaterialia, 2012, 8(3): 1137-1145.
[8]  Hallab N J, Bundy K J, O'Connor K, et al. Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion[J]. Tissue Engineering, 2001, 7(1): 55-71.
[9]  Wang L T, Yang M Y, Zhu L J, et al. Preparation and performance of silk sericin/hydroxyapatite composite bone scaffold[J]. Science of Sericulture, 2010, 36(4): 639-644 (in Chinese). 王琳婷, 杨明英, 朱良均, 等. 丝胶蛋白/羟基磷灰石复合支架材料的制备及性能研究[J]. 蚕业科学, 2010, 36(4): 639-644.
[10]  Zamani F, Amani-Tehran M, Latifi M, et al. The influence of surface nanoroughness of electrospun PLGA nanofibrous scaffold on nerve cell adhesion and proliferation[J]. Journal of Materials Science: Materials in Medicine, 2013, 24(6): 1551-1560.
[11]  Sato N, Kuwana T, Yamamoto M, et al. Bone response to immediate loading through titanium implants with different surface roughness in rats[J]. Odontology, 2014, 102(2): 249-258.
[12]  Ross A M, Jiang Z X, Bastmeyer M, et al. Physical aspects of cell culture substrates: Topography, roughness, and elasticity[J]. Small, 2012, 8(3): 336-355.
[13]  Gittens R A, Olivares-Navarrete R, Schwartz Z, et al. Implant osseointegration and the role of microroughness and nanostructures: Lessons for spine implants[J]. Acta Biomaterialia, 2014, 10(8): 3363-3371.
[14]  Yang M Y, Shuai Y J, Zhou G S, et al. Tuning molecular weights of Bombyx mori (B. mori) silk sericin to modify its assembly structures and materials formation[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 13782-13789.
[15]  Vepari C, Kaplan D L. Silk as a biomaterial[J]. Progress in Polymer Science, 2007, 32(8-9): 991-1007.
[16]  Wang Y, Kim H J, Vunjak-Novakovic G, et al. Stem cell-based tissue engineering with silk biomaterials[J]. Biomaterials, 2006, 27(36): 6064-6082.
[17]  Lv Y J, Zhang Y H, Liu L, et al. Effect of silk-RGD fusion protein modified hydroxyapatite/silk fibroin scaffolds on the growth of osteoblasts[J]. Acta Materiae Compositae Sinica, 2011, 28(4): 89-93 (in Chinese). 吕银洁, 张艳红, 刘琳, 等. Silk-RGD融合蛋白修饰羟基磷灰石/丝素蛋白支架对成骨细胞生长的影响[J]. 复合材料学报, 2011, 28(4): 89-93.
[18]  Yang M Y, Shuai Y J, Zhang C, et al. Biomimetic nucleation of hydroxyapatite crystals mediated by Antheraea pernyi silk sericin promotes osteogenic differentiation of human bone marrow derived mesenchymal stem cells[J]. Biomacromolecules, 2014, 15(4): 1185-1193.
[19]  Yang M Y, Mandal N, Shuai Y J, et al. Mineralization and biocompatibility of Antheraea pernyi (A. pernyi) silk sericin film for potential bone tissue engineering[J]. Bio-Medical Materials and Engineering, 2014, 24(1): 815-824.
[20]  Chang M C, Tanaka J. FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde[J]. Biomaterials, 2002, 23(24): 4811-4818.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133