全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

沉积条件对碳纤维表面碳纳米管生长的影响
Effects of deposition conditions on growth of carbon nanotubes on surface of carbon fibers

DOI: 10.13801/j.cnki.fhclxb.20150410.001

Keywords: 碳纳米管,碳纤维,化学气相沉积法,原位生长,沉积条件,结构
carbon nanotubes
,carbon fibers,chemical vapor deposition method,situ growth,deposition condition,structure

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用化学气相沉积(CVD)法在碳纤维(CF)表面原位生长碳纳米管(CNTs).考察了不同催化剂、沉积温度、氢气流量以及样品距进气口距离等工艺参数对CNTs-CF生长的影响.利用SEM和高分辨透射电子显微镜(HRTEM)对CNTs-CF形貌和微结构进行了表征和分析.结果表明: 在CF表面原位生长的CNTs为多壁结构, 其中以Ni为催化剂得到的CNTs直径小、分布均匀;在600~750 ℃温度范围内, 随着温度的升高, CNTs直径和长度减小, 产量降低;随着氢气流量的增加, CNTs直径和长度均增加;距进气口30 cm, 在CF表面得到的CNTs覆盖率高、直径小且分布窄, 有利于制备高质量CNTs. Carbon nanotubes (CNTs) were prepared directly on carbon fibers by chemical vapor deposition (CVD) method. The different process parameters such as catalyst, deposition temperature, hydrogen flow rate and distance between samples and intake were investigated in relation to morphology and structure. The samples were characterized and analyzed by SEM and high resolution transmission electron microscopy (HRTEM). Results show that CNTs in-situ grown on surface of CF is multi-wall structure. CNTs which grow on carbon fibers surface using Ni-catalyst are thin and uniform distribution. The diameter and length of CNTs using Fe-catalyst reduce and yield decrease when the deposition temperature rises from 600 ℃ to 750 ℃. The diameter and length of CNTs raise with hydrogen flow rate increasing. It is in favor of preparing high quality CNTs at 30 cm from fibers to intake, at which CNTs densely distribute on the carbon fiber surface and their diameter are uniform. 国家自然科学基金(51573087)

References

[1]  Wang C G, Zhu B.Polyacrylonitrile carbon fibers[M]. Beijing: Science Press, 2011: 1-20 (in Chinese). 王成国, 朱波. 聚丙烯腈基碳纤维[M]. 北京: 科学出版社, 2011: 1-20.
[2]  Zhang J W, Jiang D Z, Zeng J C, et al. Research progress of carbon nanotube and continuous carbon fiber reinforced composites[J]. Spacecraft Recovery & Remote sensing, 2009, 30(3): 63-69 (in Chinese). 张鉴炜, 江大志, 曾竟成, 等. 碳纤维管及连续碳纤维增强复合材料研究进展[J]. 航天返回与遥感, 2009, 30(3): 63-69.
[3]  Yu Q Q, Chen G, Zheng Z C, et al. Effects of stitching on properties of carbon fiber composites[J]. Engineering Plastics Application, 2010, 38(1): 39-42 (in Chinese). 于倩倩, 陈刚, 郑志才, 等. 缝合对碳纤维复合材料性能影响研究[J]. 工程塑料应用, 2010, 38(1): 39-42.
[4]  Chu S, Chen H C, Chen H G. Effect of weave structure on mechanical fracture behavior of three-dimensional carbon fiber fabric reinforced epoxy resin composites[J]. Composites Science and Technology, 1992, 45(1): 23-35.
[5]  Park J M, Wang Z J, Kwon D J, et al. Optimum dispersion conditions and interfacial modification of carbon fiber and CNT-phenolic composites by atmospheric pressure plasma treatment[J]. Composite Part B: Engineering, 2012, 43(5): 2272-2278.
[6]  Li W Z, Wang D Z, Yang S X, et al. Controlled growth of carbon nanotubes on graphite foil by chemical vapor deposition[J]. Chemical Physics Letter, 2001, 335: 141-149.
[7]  Thostenson E T, Li W Z, Wang D Z, et al. Carbon nanotube/carbon fiber hybrid multiscale composites[J]. Journal of Applied Physics, 2002, 91(9): 6034-6037.
[8]  Zhu D B, Huang Q Z, Li Y. Fe-catalyzed in situ growth of carbon nanofibers on PAN carbon fibers[J]. New Carbon Materials, 2002, 17(3): 66-69 (in Chinese). 朱东波, 黄启忠, 李晔. Fe催化PAN炭纤维原位生长纳米炭纤维[J]. 新型炭材料, 2002, 17(3): 66-69.
[9]  Gong Q J, Li H J, Wang X, et al. In situ catalytic growth of carbon nanotubes on the surface of carbon cloth[J]. Composites Science and Technology, 2007, 67: 2986-2989.
[10]  Zhao J G, Liu L, Guo Q G, et al. Carbon nanotube growth on the surface of carbon fibers by CVD[J]. New Carbon Materials, 2008, 23(1): 12-16 (in Chinese). 赵建国, 刘朗, 郭全贵, 等. 炭纤维表面生长碳纳米管[J]. 新型炭材料, 2008, 23(1): 12-16.
[11]  Sharma S P, Lakkad S C. Morphology study of carbon nanospecies grown on carbon fibers by thermal CVD technique[J]. Surface & Coatings Technology, 2009, 203: 1329-1335.
[12]  Sharma S P, Lakkad S C. Compressive strength of carbon nanotubes grown on carbon fiber reinforced epoxy matrix multi-scale hybrid composites[J]. Surface & Coatings Technology, 2010, 205: 350-355.
[13]  Sharma S P, Lakkad S C. Effect of CNTs growth on carbon fibers on the tensile strength of CNTs grown carbon fiber-reinfored polymer matrix composites[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42: 8-15.
[14]  Mathur R B, Chatterjee S, Singh B P. Growth of carbon nanotubes on carbon fiber substrates to produce hybrid/phenolic composites with improved mechanical properties[J]. Composites Science and Technology, 2008, 68: 1608-1615.
[15]  Hao B Y, Tian S K. Research on field emission of carbon nanotubes growing on carbon cloth[J]. Materials Review, 2008, 22(8): 64-65 (in Chinese). 郝邦元, 田时开. 以碳布为基底生长碳纳米管薄膜的场发射研究[J]. 材料导报, 2008, 22(8): 64-65.
[16]  Zeng L Y, Wang W B, Liang J Q, et al. Preparation of aligned carbon nanosheets on carbon fiber substrate[J]. Journal of Functional Materials and Devices, 2008, 14(3): 669-674 (in Chinese). 曾乐勇, 王维彪, 梁静秋, 等. 碳纤维衬底上定向碳纳米片阵列的制备[J]. 功能材料与器件学报, 2008, 14(3): 669-674.
[17]  Shi F J, Cheng C, Ding X X, et al. Catalytic synthesis of bamboo-shaped carbon nanotubes by ferrocene[J]. Journal of Central China Normal University, 2004, 38(1): 40-43 (in Chinese). 石峰军, 程春, 丁晓夏, 等. 用二茂铁催化生长竹节状碳纳米管[J]. 华中师范大学学报, 2004, 38(1): 40-43.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133