|
- 2017
工艺参数对楔横轧42CrMo/Q235复合材料层合轴厚径比的影响
|
Abstract:
借助ANSYS/LS-DYNA软件,建立楔横轧层合轴有限元模型,根据四因素三水平的正交实验进行部分厚径比轧制实验。通过有限元数值模拟,分析工艺参数成形角、展宽角、断面收缩率和轧制温度对厚径比的影响规律。结果表明:轧制实验结果和有限元模拟的结果相符合,有限元模型可以用来预测厚径比。厚径比随着展宽角的增大先迅速下降,后缓慢下降;随着轧制温度的增大先增加,后缓慢增加;随着断面收缩率的增大先缓慢增加,后趋于平缓;随着成形角的增大变化不明显。对厚径比的影响主次为:展宽角、轧制温度、断面收缩率、成形角。研究结果有助于指导层合轴覆材厚度和基材半径尺寸的调控与设计。 By using ANSYS/LS-DYNA software, the finite element(FE) model of cross-wedge rolling of laminated shafts was established. Some thickness-radius ratio rolling experiments were carried out under the orthogonal experimental designed with four factors and three levels. Through finite element simulation, the effect of process parameters including forming angle, spreading angle, area reduction and rolling temperature on thickness-radius ratio were analyzed. The results show that the rolling experimental results accord with the simulation results, which shows that finite element model can be used to predict thickness-radius ratio. With the increase of spreading angle, the thickness-radius ratio sharply decreases first and then slowly decreases. With the increase of temperature, the thickness-radius ratio strengthens first and then slowly strengthens. With the increase of area reduction, the thickness-radius ratio slowly strengthens first and then changes little. With the increase of forming angle, the thickness-radius ratio change is not obvious. The influencing sequence on the thickness-radius ratio is spreading angle, rolling temperature, area reduction and forming angle in turn. The research results contribute to control and design clad material thickness and matrix material radius size of laminated shaft. 国家自然科学基金(51405248;51475247);国际科技合作项目(CB11-13);浙江省新苗计划资助项目(2015R405073)
[1] | ARATANI M, ISHIGURO Y, HASHIMOTO, et al. Development of UTS 980 MPa grade steel tube with excellent formability for automotive body parts[J]. Lecture Notes in Electrical Engineering, 2013, 199(11):213-224. |
[2] | 杨合, 李落星, 王渠东, 等. 轻合金成形领域科学技术发展研究[J]. 机械工程学报, 2010, 46(12):31-42. YANG H, LI L X, WANG Q D, et al. Research on the development of advanced forming for lightweight alloy materials area[J]. Journal of Mechanical Engineering, 2010, 46(12):31-42 (in Chinese). |
[3] | CASSADA W, LIU J. Aluminum alloys for aircraft structure[J]. Journal of Advanced Materials and Processing, 2002, 160(12):27-29. |
[4] | 杨勇, 何涛, 汪泽轩, 等. T91 楔横轧成形过程的数值模拟与分析[J]. 锻压技术, 2015, 40(10):148-153. YANG Y, HE T, WANG Z X, et al. Numerical simulation and analysis on cross wedge rolling process for T91[J]. Forging & Stamping Technology, 2015, 40(10):148-153 (in Chinese). |
[5] | 霍元明, 王宝雨, 林建国, 等. 楔横轧高铁车轴钢25CrMo4塑性损伤形成机理[J]. 东北大学学报, 2013, 34(11):1625-1629. HUO Y M, WANG B Y, LIN J G, et al. Damage mechanics research for the high-speed railway axle steel 25CrMo4 during hot cross wedge rolling[J]. Journal of Northeastern University, 2013, 34(11):1625-1629 (in Chinese). |
[6] | 郑振华, 刘晋平, 王宝雨, 等. 成形角对楔横轧21-4N合金钢气门心部质量的影响[J]. 北京科技大学学报, 2013, 35(2):228-233. ZHENG Z H, LIU J P, WANG B Y, et al. Effect of forming angle on the central quality of 21-4N valves by cross wedge rolling[J]. Journal of University of Science and Technology Beijing, 2013, 35(2):228-233 (in Chinese). |
[7] | 张宁, 王宝雨, 胡正寰. 楔横轧成形GH4169合金的热力耦合数值模拟[J]. 北京科技大学学报, 2011, 33(11):1396-1401. ZHANG N, WANG B Y, HU Z H. Thermomechanical coupled numerical simulation of GH 4169 alloy for cross wedge rolling[J]. Journal of University of Science and Technology Beijing, 2011, 33(11):1396-1401 (in Chinese). |
[8] | 彭文飞, 焦思佳, 束学道, 等. 楔横轧非对称轴类件的可行性分析究[J]. 中南大学学报:自然科学版, 2012, 43(11):4280-4285. PENG W F, JIAO S J, SHU X D, et al. Feasibility of cross wedge rolling asymmetric shaft parts[J]. Journal of Central South University:Science and Technology, 2012, 43(11):4280-4285 (in Chinese). |
[9] | 黄江华, 刘晋平, 王宝雨, 等. 4Cr9Si2马氏体钢气门楔横轧工艺研究[J]. 中南大学学报, 2013, 44(7):2744-2750. HUANG J H, LIU J P, WANG B Y, et al. Process research on 4Cr9Si2 martensite steel valve in CWR[J]. Journal of Center South University, 2013, 44(7):2744-2750 (in Chinese). |
[10] | 孙影, 张麦仓, 董建新, 等. Q235钢的热变形特性[J]. 钢铁, 2006, 18(5):42-45, 59. SUN Y, ZHANG M C, DONG J X, et al. Hot deformation behavior of Q235 steel[J]. Journal of Iron and Steel Research, 18(5):42-45, 59 (in Chinese). |
[11] | 李传民, 束学道, 胡正寰. 楔横轧多楔轧制铁路车轴可行性有限元分析[J]. 中国机械工程, 2006, 17(19):2017-2019. Li C M, SHU X D, HU Z H. Feasibility study on multi-wedge cross wedge rolling of railway axles with finite element analysis[J]. Journal of Mechanical Engineering, 2006, 17(19):2017-2019 (in Chinese). |
[12] | PATER Z, GONTARZ A, TOFIL A. Analysis of the cross-wedge rolling process of toothed shafts made from 2618 aluminium alloy[J]. Journal of Shanghai Jiaotong University, 2011, 16(2):162-166. |
[13] | 刘文萍, 彭文飞, 束学道, 等. 楔横轧同种材料层合轴的展宽短应力分析[J]. 塑性工程学报, 2014, 21(5):82-87. LIU W P, PENG W F, SHU X D. Stress analysis of spreading stage for cross wedge rolled the same material laminated shaft[J]. Journal of Plasticity Engineering, 2014, 21(5):82-87 (in Chinese). |
[14] | 张建华, 彭文飞, 沈法, 等. 基于应力应变的楔横轧层合轴分界面结合机理研究[J]. 热加工工艺, 2015, 44(17):80-83. ZHANG J H, PENG W F, SHEN F, et al. Research on interface binding mechanism of cross wedge rolling laminated shaft based on stress and strain[J]. Hot Working Technology, 2015, 44(17):80-83 (in Chinese). |
[15] | 蔺永诚, 陈明松, 钟 掘. 42Cr Mo 钢的热压缩流变应力行为[J]. 中南大学学报:自然科学版, 2008, 39(8):549-553. LIN Y C, CHEN M S, ZHONG J. Flow stress behaviors of 42CrMo steel during hot compression[J]. Journal of Central South University:Science and Technology, 2008, 39(8):549-553 (in Chinese). |
[16] | 束学道, 彭文飞, 聂广占, 等. 楔横轧大型轴件轧制力规律研究[J]. 塑性工程学报, 2009, 16(1):102-106. SHU X D, PENG W F, NIE G Z, et al. The study of rolling force on forming large-sized shaft-part by cross wedge rolling[J]. Journal of Plasticity Engineering, 2009, 16(1):102-106 (in Chinese). |