全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

一种多功能有机蒙脱土-纳米TiO2/环氧树脂复合材料
Versatile high-performance organo-montmorillonite-nano TiO2/epoxy composites

DOI: 10.13801/j.cnki.fhclxb.20171012.005

Keywords: 有机蒙脱土,纳米TiO2,维度,环氧树脂,复合材料
organo-montmorillonite
,nano TiO2,dimensionality,epoxy,composites

Full-Text   Cite this paper   Add to My Lib

Abstract:

将有机蒙脱土(O-MMT)和纳米TiO2共同复合到环氧树脂中,成功地制备出了一种高性能多功能O-MMT-纳米TiO2/环氧树脂复合材料。由XRD检测结果和TEM观察结果证实,由于利用了O-MMT、纳米TiO2与环氧树脂间的相互作用,蒙脱土(MMT)层被高度剥离,所得的二维MMT纳米单片与零维纳米TiO2颗粒交错分布于树脂基体中。力学性能测试、热分析和耐沾污性试验表明,O-MMT-纳米TiO2/环氧树脂复合材料的多项性能都比纯环氧树脂有大幅提高。 Versatile high-performance organo-montmorillonite (O-MMT)-nano TiO2/epoxy composite was successfully prepared by co-incorporating O-MMT and nano TiO2 into the epoxy matrix. XRD and TEM reveale that in O-MMT-nano TiO2/epoxy composites, montmorillonite (MMT) layers are highly exfoliated into nanoscale MMT mono-platelets by the strong interaction among O-MMT, nano TiO2 and epoxy, and the 2D MMT mono-platelets take an interlacing arrangement with the 0D nano TiO2 particles in the epoxy matrix. The mechanical tests, thermal analyses and test for dirt pickup resistance and stain removal show that the resulting O-MMT-nano TiO2/epoxy composite obtain considerable improvements over the pure epoxy in multiple properties. This study suggests that co-incorporation of proper, dimensionally different nanoscale particles into polymer matrices is a successful way for preparing versatile high-performance polymer composites. “十三五”装备预先研究项目(10204010307);海军工程大学理学院基础研究基金(HGDLXY17ZK004)

References

[1]  CHEN C G, JUSTICE R S, SCHAEFER D W, et al. Highly dispersed nanosilica-epoxy resins with enhanced mechanical properties[J]. Polymer, 2009, 49(17):3805-3815.
[2]  SALAM H, YU D, DAVIES I J, et al. The effects of material formulation and manufacturing process on mechanical and thermal properties of epoxy/clay nanocomposites[J]. International Journal of Advanced Manufacturing Technology, 2016, 87(5):1999-2012.
[3]  GLASKOVA T, ANISKEVICH A. Moisture effect on deformability of epoxy/montmorillonite nanocomposite[J]. Journal of Applied Polymer Science, 2010, 116(1):493-498.
[4]  KONDYURIN A, BILEK M. Etching and structure transformations in uncured epoxy resin under rf-plasma and plasma immersion ion implantation[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2010, 268(10):1568-1580.
[5]  付昆昆, 郑百林, 张佳宁, 等. 基于纳米压痕法的埃洛石纳米管/环氧复合材料力学性能表征[J]. 复合材料学报, 2015, 32(1):32-38. FU K K, ZHENG B L, ZHANG J N, et al. Mechanical property characterization of halloysite nanotubes/epoxy composites based on nanoindentation method[J]. Acta Materiae Compositae Sinica, 2015, 32(1):32-38(in Chinese).
[6]  JANG J S, VARISCHETTI J, LEE G W, et al. Experimental and analytical investigation of mechanical damping and CTE of both SiO2 particle and carbon nanofiber reinforced hybrid epoxy composites[J]. Compos Part A, 2011, 42(1):98-103.
[7]  周宏, 朴明昕, 李芹, 等. 氧化石墨烯纳米片/环氧树脂复合材料的制备与性能[J]. 复合材料学报, 2015, 32(5):1309-1315. ZHOU H, PIAO M X, LI Q, et al. Preparation and pro-perties of graphene oxide nanosheeets/epoxy composites[J]. Acta Materiae Compositae Sinica, 2015, 32(5):1309-1315(in Chinese).
[8]  STRACHOTA A, RODZE AN'G K, RIBOT F, et al. Tin-based "super-POSS" building blocks in epoxy nanocomposites with highly improved oxidation resistance[J]. Polymer, 2014, 55(16):3498-3515.
[9]  沈小军, 孟令轩, 付绍云. 石墨烯-多壁碳纳米管协同增强环氧树脂复合材料的低温力学性能[J]. 复合材料学报, 2015, 32(1):21-26. SHEN X J, MENG L X, FU S Y. Cryogenic mechanical properties of epoxy composites synergistically reinforced by graphene-multi-walled carbon nanotubes[J]. Acta Materiae Compositae Sinica, 2015, 32(1):21-26(in Chinese).
[10]  余宗学, 马瑜, 何毅, 等. TiO2-GO的制备及TiO2-GO/环氧树脂涂层的抗腐蚀性能[J]. 复合材料学报, 2015, 32(4):1017-1024. YU Z X, MA Y, HE Y, et al. Preparation of TiO2-GO and anti-corrosion performances of TiO2-GO/epoxy coatings[J]. Acta Materiae Compositae Sinica, 2015, 32(4):1017-1024(in Chinese).
[11]  AMIT C, MUHAMMAD S I. Fabrication and characterization of TiO2-epoxy nanocomposite[J]. Materials Science and Engineering A, 2008, 487(1):574-585.
[12]  DEAN D, WALKER R, THEODORE M, et al. Chemorheology and properties of epoxy/layered silicate nanocomposites[J]. Polymer, 2005, 46(9):3014-3021.
[13]  LI X, ZHAN Z J, PENG G R, et al. Nano-disassembling method-A new method for preparing completely exfoliated epoxy/clay nanocomposites[J]. Applied Clay Science, 2012, 55(4):168-172.
[14]  LI X, ZHAN Z J, PENG G R, et al. New high-performance epoxy nanocomposites co-reinforced by two-and zero-dimensional nanoscale particles[J]. Materials Science and Engineering A, 2011, 530(1):680-684.
[15]  LI X, ZHAN Z J, PENG G R, et al. Special core/shell structures self-organized from naked inorganic nanoparticle[J]. Journal of Computational and Theoretical Nanoscience, 2012, 5(1):299-301.
[16]  American Society for Testing and Materials International. Standard test method for tensile properties of plastics:ASTM D638-2010[S]. Philadelphia:ASTM International, 2010.
[17]  WU F M, YANG G S. Poly(butylene terephthalate)/organoclay nanocomposites prepared by in-situ bulk polymerization with cyclic poly(butylene terephthalate)[J]. Materials Letters, 2009, 63(20):1686-1688.
[18]  AKBARI B, BAGHERI R. Deformation mechanism of epoxy/clay nanocomposite[J]. European Polymer Journal, 2007, 43(3):782-788.
[19]  LI X, ZHAN Z J, PENG G R, et al. Comprehensive high-performance epoxy nanocomposites co-reinforced by organo-montmorillonite and nanoSiO2[J]. Journal of Applied Polymer Science, 2012, 123(6):3503-3510.
[20]  LI X, ZHAN Z J, PENG G R, et al. A new method for preparing completely exfoliated epoxy/clay nanocomposites:nano-disassembling method[J]. Polymer Bulletin, 2011, 67(4):719-727.
[21]  何毅, 陈春林, 罗智, 等. TiO2-MWCNTs的制备及TiO2-MWCNTs/epoxy复合涂层性能[J]. 复合材料学报, 2014, 31(2):429-435. HE Y, CHEN C L, LUO Z, et al. Preparation of TiO2-MWCNTs and properties of TiO2-MWCNTs/epoxy composite epoxy coatings[J]. Acta Materiae Compositae Sinica, 2014, 31(2):429-435(in Chinese).
[22]  American Society for Testing and Materials International. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials:ASTM D790-2010[S]. Philadelphia:ASTM International, 2010.
[23]  American Society for Testing and Materials International. Standard test methods for determining the izod pendulum impact resistance of plastics:ASTM D256-2010[S]. Philadelphia:ASTM International, 2010.
[24]  中国国家标准化管理委员会. 建筑涂料涂层耐沾污性试验方法:GB/T 9780-2013[S]. 北京:中国标准出版社, 2014. Standardization Administration of the People's Republic of China. Test method for dirt pickup resistance and stain removal of film of architectural coatings and paint:GB/T 9780-2013[S]. Beijing:China Standards Press, 2014(in Chinese).
[25]  ORTELLI S, COSTA A, DONDI M. TiO2 nanosols applied directly on textiles using different purification treatments[J]. Materials, 2015, 8(11):7988-7996.
[26]  NGO T D, TON-THAT M T. Wet process and exfoliation of clay in epoxy[J]. Korean Journal of Chemical Engineering, 2016, 33(12):3550-3557.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133