全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

三维网状石墨烯/环氧树脂热界面复合材料的制备和热性能
Preparation and thermal performances of 3D graphene network/epoxy resin thermal interface composites

DOI: 10.13801/j.cnki.fhclxb.20160919.002

Keywords: 石墨烯,环氧树脂,热导率,力学性能,连续结构
graphene
,epoxy resin,thermal conductivity,mechanical properties,continuous strucutre

Full-Text   Cite this paper   Add to My Lib

Abstract:

三维网状石墨烯/环氧树脂热界面复合材料由于具有良好的热导性能和力学性能,而被广泛应用于微电子器件领域。但是通过化学剥离-还原法制备石墨烯,在填加石墨烯质量分数相同的条件下,石墨烯/环氧树脂热界面复合材料的热导率差别仍然很大。研究发现这主要是由于石墨烯表面官能团含量不同所导致的,因此很难建立统一的标准评估石墨烯作为导热填料的作用效果。为了避免表面官能团对石墨烯/环氧树脂复合物热导率的影响,本研究小组采用化学气相沉积法制备的三维网状石墨烯作为导热填料,对环氧树脂进行修饰,制备了一系列石墨烯/环氧树脂材料。通过研究三维网状石墨烯含量对石墨烯/环氧树脂材料热导率、力学性能及热导率在高温条件下稳定性的影响,有助于完善石墨烯修饰的环氧树脂热界面复合材料的研究,并建立石墨烯作为导热填料的评价体系。 Graphene modified epoxy resin, which can be used widely in the microelectronic device area, has attracted a great deal attention due to its excellent thermal conductivity and mechanical strength. However, the reported thermal conductivities of thermal interface composite (TIMs) from different research groups shows obvious discrepancy even if the adopted mass fraction of graphene is identical. After research, we found that the reduction degree is closely related to the thermal performance of resulting TIMs. Thereby, it is difficult to evaluate the RGO acting as conductive filler under uniform standard. In this study, 3D graphene network was employed as the conductive filler to prepare a series thermal interface composites with epoxy resin. The influence from mass fraction of adopted 3D graphene network on the thermal conductivity of resulting thermal interface composites was studied, and the influences on the thermal performance stability under high temperature and mechanical properties were revealed. The findings are useful to build a completed evaluation system for estimate the ability of graphene using as conductive filler. 国家自然科学基金青年基金(61401297;61401456;50156012;61602334);江苏省自然科学基金青年基金(BK20140283;BK20150266);苏州市应用基础研究计划(SYG201255)

References

[1]  ALEXANDER A, BALANDIN S G, WENZHONG B, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907.
[2]  POP E, MANN D, WANG Q. Thermal conductance of an individual single-wall carbon nanotube above room temperature[J]. Nano Letters, 2006, 6(1): 96-100.
[3]  GHOSH S, CALIZO I, TEWELDEBRHAN D. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits[J]. Applied Physics Letters, 2008, 92(15): 151911-151913.
[4]  SARVAR F, WHALLEY D C, CONWAY P P. Thermal interface materials: A review of the state of the art[C]//Proceeding electronic system integration technology conference, 2006, 2: 1292-1302.
[5]  TANG B, HU G X. Application of graphene materials as filler to improve thermal transport property of epoxy resin for thermal interface materials[J]. International Journal of Heat and Mass Transfer, 2015, 85(2): 420-429.
[6]  CHEN Z P, REN C W, GAO L B, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapor deposition[J]. Nature Materials, 2011, 10(6): 424-428.
[7]  BALANDIN A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials, 2011, 10(10): 569-581.
[8]  CAHILL D G, GOODSON K, MAJUMDAR A. Thermometry and thermal transport in micro/nanoscale solid-state devices and structures[J]. Journal of Heat Transfer, 2002, 124(2): 223-241.
[9]  HAO F, FANG D N, XU Z P. Mechanical and thermal transport properties of graphene with defects[J]. Applied Physical Letters, 2011, 99(4): 041901-041903.
[10]  乔梁, 赵洪强, 郑精武, 等. 片状Al2O3对Al2O3/FEP复合材料热导率的影响[J]. 复合材料学报, 2009, 26(6): 37-41. QIAN L, ZHAO H Q, ZHENG J W, et al. Effects of alumina platelets on thermal conductivity of Al2O3/FEP composite[J]. Acta Materiae Compositae Sinica, 2009, 26(6): 37-41 (in Chinese).
[11]  石志想, 傅仁利, 何兵兵, 等. 无机填料对环氧模塑料导热和阻燃性能的影响[J]. 复合材料学报, 2011, 28(6): 8-13. SHI Z X, FU R L, HE B B, et al. Effect of inorganic fillers on the thermal conductivity and flame retardancy of epoxy molding compounds[J]. Acta Materiae Compositae Sinica, 2011, 28(6): 8-13 (in Chinese).
[12]  PRASHER R S, CHANG J Y, SAUCIUC I, et al. Nano and micro technology-based next-generation pac age-level cooling solutions[J]. Intel Technology Journal, 2005, 9(4): 285-296.
[13]  FELBA J, WONG C P, MOON K S. Thermally conductive nanocomposites [M]. New York: Springer Science, 2010: 277-314.
[14]  BABAEI H, KEBLINSKI P, KHODADADI J M. Thermal conductivity enhancement of paraffins by in creasing the alignment of molecules through adding CNT/graphene[J]. International Journal of Heat and Mass Transfer, 2013, 58(1-2): 209-216.
[15]  SHAHI K M F, BALANDIN A A. Grphene-multilayer graphene nanocomposites as highly efficient thermal interface materials[J]. Nano Letters, 2012, 12(2): 861-867.
[16]  汪文, 丁宏亮, 张子宽, 等, 石墨烯微片/聚丙烯导热复合材料的制备与性能[J]. 复合材料学报, 2013, 30(6): 14-20. WANG W, DING H L, ZHANG Z K, et al. Preparation and properties of graphene nanoplatelets/PP thermal conductive composites[J]. Acta Materiae Compositae Sinica, 2013, 30(6): 14-20 (in Chinese).
[17]  SHAHI K M F, BALANDIN A A. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials[J]. Nano Letters, 2012, 12(2): 861-867.
[18]  FU Y X, MO D C, LU S S. Thermal conductivity enhancement of epoxy adhesive using graphene sheets as additives[J]. International Journal of Thermal Science, 2014, 86(13): 276-283.
[19]  IM H, KIM J. Thermal conductivity of a graphene oxide-carbon nanotube hybrid/epoxy composite[J]. Carbon, 2012, 50(15): 5429-5440.
[20]  SUNG H S, KWANG H P, BO H K. Enhanced thermal conductivity of epoxy-graphene cmposites by using non-oxidized graphene flakes with non-covalent functionalization[J]. Advanced Materials, 2013, 25(5): 732-737.
[21]  SUN Y F, CAO Y C, HUANG W Q, et al. High-performance photoanode for dye-sensitized solar cells with graphene modified two-layer construction[J]. Material Letters, 2016, 165(1):178-180.
[22]  周琪, 钟永辉, 陈星, 等. 石墨烯/纳米TiO2复合材料的制备及其光催化性能[J]. 复合材料学报, 2014, 31(2): 255-262. ZHOU Q, ZHONG Y H, CHEN X, et al. Preparation and photocatalytic activity of garphene/nano TiO2 composites[J]. Acta Materiae Compositae Sinica, 2014, 31(2): 255-262 (in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133