|
- 2017
Bi2Te3/炭黑复合材料的制备及热电性能
|
Abstract:
采用水热法合成Bi2Te3粉体,将炭黑(CB)与其掺杂制备不同比例的碲化铋/炭黑(Bi2Te3/CB)复合材料,研究复合材料的热电性能。同时采用TGA、SEM、XRD等分析方法表征Bi2Te3/CB复合材料的结构,探究微观结构与热电性能的关系。研究发现:室温下,CB的引入使Bi2Te3/CB复合材料的热导率大大降低(0.5957 W/(m · K)降到0.0888 W/(m · K));随着Bi2Te3含量的增加,复合材料的电导率、热导率均增大,Seebeck系数先增加后降低;当Bi2Te3含量为88.9%时,在558℃烧结10 min所得的Bi2Te3/CB复合材料室温下热电优值ZT最大(ZT=0.21)。虽然ZT值未能达到应用价值,但是CB的添加为改善Bi2Te3材料的热电性能,尤其在降低材料的热导率方面,提供了新方法和新思路。 Bi2Te3 powders were successfully synthesized by hydrothermal reaction, which were composited with carbon black (CB), and then the thermoelectric (TE) performance of Bi2Te3/CB composites was investigated. At the same time, TGA, SEM and XRD analysis methods were used to characterize the structure of Bi2Te3/CB composites and the relationship between microscopic structures and TE properties was researched intensively. It shows that the thermal conductivities of Bi2Te3/CB composites reduce sharply (from 0.5957 W/(m·K) to 0.0888 W/(m·K) at room temperature) because of doped with CB under the special structure design. However, the values of electrical and thermal conductivities of Bi2Te3/CB composites improve with the increase of Bi2Te3 weight fraction, and Seebeck coefficients increase first and then decrease. After sintering under 558℃ for 10 min, the figure of merit (ZT) of Bi2Te3/CB composites with 88.9% Bi2Te3 is the best (ZT=0.21) at room temperature. Although the ZT value is much lower than the stand of TE material application, this topic investigation may provide new insights and optimization approach into the design and development of Bi2Te3 TE material for application, especially in terms of lower thermal conductivity of materials. 国家自然科学基金(51303116)
[1] | SONI A, YANYUAN Z, LIGEN Y, et al. Enhanced thermoelectric properties of solution grown Bi2Te3-xSex nanoplatelet composites[J]. Nano Letters, 2012, 12(3):1203-1209. |
[2] | GANGULY S, ZHOU C, MORELLI D, et al. Synthesis and characterization of telluride aerogels:Effect of gelation on thermoelectric performance of Bi2Te3 and Bi2-xSbxTe3 nanostructures[J]. The Journal of Physical Chemistry C, 2012, 116(33):17431-17439. |
[3] | XIA D, LIU C, FAN S. A solar thermoelectric conversion material based on Bi2Te3 and carbon nanotube composites[J]. The Journal of Physical Chemistry C, 2014, 118(36):20826-20831. |
[4] | CHEN Z G, YANG L, MA S, et al. Paramagnetic Cu-doped Bi2Te3 nanoplates[J]. Applied Physics Letters, 2014, 104(5):438. |
[5] | DU Y, CAI K F, CHEN S, et al. Facile preparation and thermoelectric properties of Bi2Te3 based alloy nanosheet/PEDOT:PSS composite films[J]. ACS Applied Materials & Interfaces, 2014, 6(8):5735-5743. |
[6] | FLEURIAL J P, GAILLIARD L, TRIBOULET R, et al. Thermal properties of high quality single crystals of bismuth telluride-Part Ⅰ:Experimental characterization[J]. Journal of Physics and Chemistry of Solids, 1988, 49(10):1237-1247. |
[7] | 陈明礼. 炭素材料的研究热点和发展趋势[J]. 科技创新与应用, 2016(4):102. CHEN M L. Hottopics on carbon materials and science[J]. Technology Innovation and Application, 2016(4):102 (in Chinese). |
[8] | OU R, GUPTA S, PARKER C A, et al. Fabrication and electrical conductivity of poly (methyl methacrylate) (PMMA)/carbon black (CB) composites:Comparison between an ordered carbon black nanowire-like segregated structure and a randomly dispersed carbon black nanostructure[J]. The Journal of Physical Chemistry B, 2006, 110(45):22365-22373. |
[9] | 杨波, 陈晓浪, 陈光顺, 等. 导电炭黑填充PP-EAA复合材料的形态及电性能[J]. 复合材料学报, 2007, 24(3):78-83. YANG B, CHEN X L, CHEN G S, et al. Morphology and conductivity of conductive carbon black filled PP2EAA composites[J]. Acta Materiae Compositae Sinica, 2007, 24(3):78-83 (in Chinese). |
[10] | 杨波, 陈光顺, 李姜, 等. 多壁碳纳米管增强炭黑/聚丙烯导电复合材料导电行为[J]. 复合材料学报, 2009, 26(4):41-46. YANG B, CHEN G S, LI J, et al. Multi-wall carbon nanotubes enchanced cinductivity of CB/PP electrical conductive composites[J]. Acta Materiae Compositae Sinica, 2009, 26(4):41-46 (in Chinese). |
[11] | MA P C, LIU M Y, ZHANG H, et al. Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black[J]. ACS Applied Materials & Interfaces, 2009, 1(5):1090-1096. |
[12] | DU Y, CAI K F, SHEN S Z, et al. The thermoelectric performance of carbon black/poly (3, 4-ethylenedioxy thiophene):Poly (4-styrenesulfonate) composite films[J]. Journal of Materials Science:Materials in Electronics, 2013, 24(5):1702-1706. |
[13] | ZHAO L, ZHAO J, SUN X, et al. Enhanced thermoelectric properties of hybridized conducting aerogels based on carbon nanotubes and pyrolyzed resorcinol-formaldehyde resin[J]. Synthetic Metals, 2015, 205:64-69. |
[14] | SNYDER G J, TOBERER E S. Complex thermoelectric materials[J]. Nature Materials, 2008, 7(2):105-114. |
[15] | DISALVO F J. Thermoelectric cooling and power generation[J]. Science, 1999, 285(5428):703-706. |
[16] | BUX S K, FLEURIAL J P, KANER R B. Nanostructured materials for thermoelectric applications[J]. Chemical Communications, 2010, 46(44):8311-8324. |
[17] | WANG W, ZHANG G, LI X. Manipulating growth of thermoelectric Bi2Te3/Sb multilayered nanowire arrays[J]. The Journal of Physical Chemistry C, 2008, 112(39):15190-15194. |
[18] | SEO S, LEE K, JEONG Y, et al. Method of efficient Ag doping for fermi level tuning of thermoelectric Bi0.5Sb1.5Te3 alloys using a chemical displacement reaction[J]. The Journal of Physical Chemistry C, 2015, 119(32):18038-18045. |
[19] | MIN Y, PARK G, KIM B, et al. Synthesis of multishell nanoplates by consecutive epitaxial growth of Bi2Se3 and Bi2Te3 nanoplates and enhanced thermoelectric properties[J]. ACS Nano, 2015, 9(7):6843-6853. |
[20] | LU M P, LIAO C N, HUANG J Y, et al. Thermoelectric properties of Ag-doped Bi2(Se, Te)3 compounds:Dual electronic nature of Ag-related lattice defects[J]. Inorganic Chemistry, 2015, 54(15):7438-7444. |
[21] | JUNG C S, KIM H S, IM H S, et al. In situ temperature-dependent transmission electron microscopy studies of pseudobinary mGeTe · Bi2Te3 nanowires and first-principles calculations[J]. Nano Letters, 2015, 15(6):3923-3930. |
[22] | CHAI Z, WANG H, SUO Q, et al. Thermoelectric metal tellurides with nanotubular structures synthesized by the Kirkendall effect and their reduced thermal conductivities[J]. Crystengcomm, 2014, 16(17):3507-3514. |
[23] | ZHU H T, LUO J, LIANG J K. Synthesis of highly crystalline Bi2Te3 nanotubes and their enhanced thermoelectric pro-perties[J]. Journal of Materials Chemistry A, 2014, 2(32):12821-12826. |
[24] | YANG L, CHEN Z G, HONG M, et al. Enhanced thermoelectric performance of nanostructured Bi2Te3 through significant phonon scattering[J]. ACS Applied Materials & Interfaces, 2015, 7(42):23694-23699. |
[25] | YANG J, CHENG G H, ZENG J H, et al. Shape control and characterization of transition metal diselenides MSe2 (M=Ni, Co, Fe) prepared by a solvothermal-reduction process[J]. Chemistry of Materials, 2001, 13(3):848-853. |
[26] | DRABBLE J R, GOODMAN C H L. Chemical bonding in bismuth telluride[J]. Journal of Physics and Chemistry of Solids, 1958, 5(1):142-144. |