全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

含面内波纹缺陷的复合材料层合板刚度性能
Stiffness of composite laminates with in-plane waviness defect

DOI: 10.13801/j.cnki.fhclxb.20170702.001

Keywords: 缺陷,面内波纹,经典层合板理论,层合板,刚度
defect
,in-plane waviness,classical lamination theory,composite laminates,stiffness

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于经典层合板理论(CLT),并考虑面内波纹引起的拉伸-弯曲耦合作用,提出了含面内波纹缺陷的复合材料层合板刚度预测模型,定量研究了波纹比、纤维偏转角和波纹位置等面内波纹参数对其三维刚度性能的影响。结果表明:理论模型预测值与文献中的结果吻合较好;面内波纹对纵向弹性模量、横向弹性模量、面内剪切模量、主泊松比和面内弯曲刚度均产生了显著影响。该建模方法为研究波纹缺陷对复合材料力学性能影响提供了参考。 By using the classical lamination theory (CLT) and considering the coupling effect of tension and bending, an analytical model of stiffness prediction was developed for composite laminates with in-plane waviness. The influence of the parameters associated with in-plane waviness such as the waviness ration, the fiber off-axis angle and the waviness position on the 3D stiffness of the laminates was investigated quantitatively. It is found that the theoretical predictions agree well with the results in literature. And the longitudinal elastic modulus, the transverse elastic modulus, the in-plane shear modulus, the major Poisson's ratio, and the in-plane bending stiffness are greatly affected by the waviness defect. The approach established provides a procedure to evaluate the effects of waviness defect on the mechanical properties of composite laminates. 中央军委装备发展部预先研究项目(41422010302);武汉市科技攻关计划(20151h0020)

References

[1]  PARK S Y, CHOI W J, CHOI H S. The effects of void contents on the long-term hygrothermal behaviors of glass/epoxy and GLARE laminates[J]. Composite Structures, 2010, 92(1):18-24.
[2]  JOYCE P J, KUGLER D, MOON T J. A technique for characterizing process-induced fiber waviness in unidirectional composite laminates-using optical microscopy[J]. Journal of Composite Materials, 1997, 31(17):1694-1727.
[3]  TARNOPOL'SKⅡ Y M, PORTNOV G G, ZHIGUN I G. Effect of fiber curvature on the modulus of elasticity for unidirectional glass-reinforced plastics in tension[J]. Mechanics of Composite Materials, 1967, 3(2):161-166.
[4]  王瑞, 王建坤, 武玲. 平纹织物复合材料的弹性模量预测[J]. 复合材料学报, 2002, 19(1):90-94. WANG R, WANG J K, WU L. Prediction for elastic properties of plain weave fabric composites[J]. Acta Materiae Compositae Sinica, 2002, 19(1):90-94(in Chinese).
[5]  王立朋, 燕瑛. 编织复合材料弹性性能的细观分析及试验研究[J]. 复合材料学报, 2004, 21(4):152-156. WANG L P, YAN Y. Micro analysis and experimental study of the elastic properties of braided composites structure[J]. Acta Materiae Compositae Sinica, 2004, 21(4):152-156(in Chinese).
[6]  张超, 许希武, 郭树祥. 二维二轴1×1编织复合材料细观结构模型及力学性能有限元分析[J]. 复合材料学报, 2011, 28(6):215-222. ZHANG C, XU X W, GUO S X. Microstructure model and finite element analysis of mechanical properties of 2D 1×1 biaxial braided composites[J]. Acta Materiae Compositae Sinica, 2011, 28(6):215-222(in Chinese).
[7]  JONES R M. Mechanics of composite materials[M]. Washington:CRC Press, 1998.
[8]  CHAN W S, CHOU C J. Effects of delamination and ply fiber waviness on effective axial and bending stiffnesses in composite laminates[J]. Composite Structures, 1995, 30(3):299-306.
[9]  ?INAR K, ERSOY N. Effect of fibre wrinkling to the spring-in behaviour of L-shaped composite materials[J]. Composites Part A:Applied Science & Manufacturing, 2014, 69(69):105-114.
[10]  VELMURUGAN R, SRINIVASULU G, JAYASANKAR S. Influence of fiber waviness on the effective properties of discontinuous fiber reinforced composites[J]. Computational Materials Science, 2014, 91(2):339-349.
[11]  TSAI C H, ZHANG C, JACK D A, et al. The effect of inclusion waviness and waviness distribution on elastic properties of fiber-reinforced composites[J]. Composites Part B:Engineering, 2011, 42(1):62-70.
[12]  燕瑛. 编织复合材料弹性性能的细观力学模型[J]. 力学学报, 1997, 29(4):429-438. YAN Y. A micromechanical model for elastic behavior analysis of woven fabric composites[J]. Chinese Journal of Theoretical and Applied Mechanics, 1997, 29(4):429-438(in Chinese).
[13]  严雪, 许希武, 张超. 二维三轴编织复合材料的弹性性能分析[J]. 固体力学学报, 2013, 34(2):140-151. YAN X, XU X W, ZHANG C. Analysis of elastic properties of 2D triaxial braided composites[J]. Acta Mechanica Solida Sinica, 2013, 34(2):140-151(in Chinese).
[14]  王荣桥, 刘茜, 胡殿印, 等. 一种改进的三维四向编织复合材料单胞模型及宏观弹性常数预测方法[J]. 复合材料学报, 2017, 34(9):1973-1981. WANG R Q, LIU Q, HU D Y, et al. Improved unit cell model and elastic constant prediction method of 3D four-directional braided composites[J]. Acta Materiae Compositae Sinica, 2017, 34(9):1973-1981(in Chinese).
[15]  PIGGOTT M R. The effect of fibre waviness on the mechanical properties of unidirectional fibre composites:A review[J]. Composite Science and Technology, 1995, 53(2):201-205.
[16]  朱俊, 吴维清, 欧阳佳斯, 等. 面外波纹对复合材料层合板弹性性能的影响[J]. 复合材料学报, 2016, 33(9):1981-1988. ZHU J, WU W Q, OUYANG J S, et al. Influence of out-of-plane waviness on elastic properties of composite laminates[J]. Acta Materiae Compositae Sinica, 2016, 33(9):1981-1988(in Chinese).
[17]  KARAMI G, GARNICH M. Effective moduli and failure considerations for composites with periodic fiber waviness[J]. Composite Structures, 2005, 67(4):461-475.
[18]  CHAN W S, WANG J S. Influence of fiber waviness on the structural response of composite laminates[J]. Journal of Thermoplastic Composite Materials, 1994, 7(3):243-260.
[19]  卢子兴, 徐强, 王伯平, 等. 含缺陷平纹机织复合材料拉伸力学行为数值模拟[J]. 复合材料学报, 2011, 28(6):200-207. LU Z X, XU Q, WANG B P, et al. Numerical simulation of plain weave composites with defects under unidirectional tension[J]. Acta Materiae Compositae Sinica, 2011, 28(6):200-207(in Chinese).
[20]  边天涯, 关志东, 刘发齐, 等. 含孔隙基体缎纹编织复合材料面内压缩弹性性能预报[J]. 北京航空航天大学学报, 2016, 42(5):1016-1024. BIAN T Y, GUAN Z D, LIU Q F, et al. Prediction on in-plane compression elastic properties of satin weave composites with pore matrix[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(5):1016-1024(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133