|
- 2018
芳纶纤维表面改性及其对芳纶/橡胶复合材料黏合性能的影响
|
Abstract:
以原位乳液聚合方法合成水性聚氨酯预聚体(WPUP)包覆纳米ZnO粒子(ZnO@WPUP),将KOH预处理后的芳纶纤维浸渍在改性ZnO乳液中进行二次处理,进一步与天然橡胶硫化,得到ZnO@WPUP改性芳纶/橡胶复合材料,并通过FTIR、SEM和H抽出实验等测试分析ZnO@WPUP对芳纶/橡胶复合材料黏合性能的影响。结果表明:WPUP能有效提高ZnO分散性,随着WPUP含量增加,ZnO@WPUP在芳纶纤维表面分散更加均匀,纤维表面粗糙度增大,改善了芳纶纤维表面橡胶的黏附量,从而大幅度提高芳纶/橡胶复合材料的黏结强度。 The waterborne polyurethane prepolymer (WPUP) encapsulated ZnO particles(ZnO@WPUP) were synthesized by using in-situ emulsion polymerization method. The aramid fibers pretreated by KOH were then secondly treated by modified ZnO emulsion. In addition, aramid/rubber composites modified by ZnO@WPUP were obtained by the vulcanization between aramid fiber and nature rubber.Meanwhile, the influence of ZnO@WPUP on the adhesion property of aramid/rubber composites was analyzed by FTIR, SEM and cord-H-pull test. The results show that WPUP can effectively enhance the dispersing property of ZnO. The roughness and dispersing property of ZnO@WPUP on the surface of aramid fibers increase obviously as the content of WPUP increasing. Thereby the modified ZnO can effectively improve the amount of adhesive rubber on the aramid fibers surface, and the adhesion strength of aramid/rubber composites is enhanced significantly. 浙江省重点研发计划(2017C01097)
[1] | TAMARGO-MARTINEZ K, MARTINEZ-ALONSO A, MONTES-MORAN M A, et al. Effect of oxygen plasma treatment of PPTA and PBO fibers on the interfacial properties of single fiber/epoxy composites studied by Raman spectroscopy[J]. Composites Science & Technology, 2011, 71(6):784-790. |
[2] | 王翔, 郑玉婴, 曹宁宁, 等. 马来酸酐刻蚀芳纶纤维/尼龙6复合材料的制备及性能[J]. 复合材料学报, 2016, 33(8):1638-1644. WANG Xiang, ZHENG Yuying, CAO Ningning, et al. Preparation and properties of aramid fibers/nylon 6 composties corroded by maleic anhydride[J]. Acta Materiae Compositae Sinica, 2016, 33(8):1638-1644(in Chinese). |
[3] | 刘冬冬, 扈艳红, 张芳芳, 等. 叠氮苯并咪唑偶联剂增强国产芳纶Ⅲ/聚三唑树脂复合材料界面[J]. 复合材料学报, 2017, 34(2):336-344. LIU Dongdong, HU Yanhong, ZHANG Fangfang, et al. Interfacial reinforcement of domestic aramid fiber Ⅲ/PTA composites using azide-containing benzimidazole coupling agent[J]. Acta Materiae Compositae Sinica, 2017, 34(2):336-344(in Chinese). |
[4] | HWANG H S, MALAKOOTI M H, PATTERSON B A, et al. Increased interyarn friction through ZnO nanowire arrays grown on aramid fabric[J]. Composites Science & Technology, 2015, 107:75-81. |
[5] | PATTERSON B A, SODANO H A. Enhanced interfacial strength and uv shielding of aramid fiber composites through ZnO nanoparticle sizing[J]. ACS Applied Materials & Interfaces, 2016, 8(49):33963. |
[6] | HWANG H S, MALAKOOTI M H, SODANO H A. Tailored interyarn friction in aramid fabrics through morphology control of surface grown ZnO nanowires[J]. Composites Part A:Applied Science & Manufacturing, 2015, 76:326-333. |
[7] | 浦鸿汀, 刘泰, 杨正龙, 等. 聚脲的合成与应用[J]. 高分子材料科学与工程, 2008, 24(7):1-5. PU Hongting, LIU Tai, YANG Zhenglong, et al. The synthesis and application of polyuria[J]. Polymer Materials Science and Engineering, 2008, 24(7):1-5(in Chinese). |
[8] | 艾涛, 王汝敏, 邓杰. Kevlar缝线表面处理对炭纤维/双马来酰亚胺树脂缝合复合材料界面性能的影响[J]. 复合材料学报, 2007, 24(1):34-39. AI Tao, WANG Rumin, DENG Jie, et al. Effect of surface modification of Kevlar stitch threads on mechanical interfacial properties of carbon fiber/bismaleimide stitched composites[J]. Acta Materiae Compositae Sinica, 2007, 24(1):34-39(in Chinese). |
[9] | LANCASTER J K. The effect of carbon fiber reinforcement on the friction and wear of polymers[J]. British Journal of Applied Physics, 1968, 1(5):549-559. |
[10] | MERCER B, ZYWICZ E, PAPADOPOLULOS P. Molecular dynamics modeling of PPTA crystallite mechanical properties in the presence of defects[J]. Polymer, 2017, 114:329-347. |
[11] | PARK B Y, KIM S C, JUNG B. Interlaminar fracture toughness of carbon fiber/epoxy composites using short kevlar fiber and/or Nylon-6 powder reinforcement[J]. Polymers for Advanced Technologies, 2015, 8(6):371-377. |
[12] | ALBERT MANERO I I, GIBSON J, FREIHOFER G, et al. Evaluating the effect of nano-particle additives in Kevlar?; 29 impact resistant composites[J]. Composites Science & Technology, 2015, 116:41-49. |
[13] | LUO L, WU P, CHENG Z, et al. Direct fluorination of para-aramid fibers 1:Fluorination reaction process of PPTA fiber[J]. Journal of Fluorine Chemistry, 2016, 186:12-18. |
[14] | SRIVASTAVA A, MAJUMDAR A, BUTOLA B S. Improving the impact resistance performance of Kevlar fabrics using silica based shear thickening fluid[J]. Materials Science & Engineering A, 2011, 529(1):224-229. |
[15] | SINGH T J. Characterization of Kevlar fiber and its compo-sites:A review[J]. Materials Today Proceedings, 2015, 2(4-5):1381-1387. |
[16] | CEN H, KANG Y, LEI Z, et al. Micromechanics analysis of Kevlar-29 aramid, fiber and epoxy resin microdroplet composite by micro-Raman spectroscopy[J]. Composite Structures, 2006, 75(1-4):532-538. |
[17] | 董利敏, 邵建中, 柴丽琴, 等. 基于界面聚合法的橄榄油聚氨酯微胶囊制备[J]. 纺织学报, 2009, 30(8):73-78. DONG Limin, SHAO Jianzhong, ZHAI Liqin, et al. Preparation of olive oil-polyurethane microcapsules by interfacial polymerization[J]. Journal of Textile Research, 2009, 30(8):73-78(in Chinese). |
[18] | 中国国家标准化管理委员会. 浸胶芳纶纱线、线绳和帘线拉伸性能的试验方法:GB/T 30311-2013[S]. 北京:中国标准出版社, 2013. Standardization Administration of the People's Republic of China. Test method for tensile properties of dipped aramid yarns and cords:GB/T 30311-2013[S]. Beijing:Standards Press of China, 2013(in Chinese). |
[19] | 中国国家标准化管理委员会. 硫化橡胶与纤维帘线静态黏合强度的测定——H抽出法:GB/T 2942-2010[S]. 北京:中国标准出版社, 2010. Standardization Administration of the People's Republic of China. Rubber, vulcanized-Determination of static adhesion to textile cord-H-pull test:GB/T 2942-2010[S]. Beijing:Standards Press of China, 2010(in Chinese). |
[20] | 王杨, 李鹏, 于运花, 等. 芳纶纤维的磷酸表面处理及其树脂基复合材料界面性能[J]. 复合材料学报, 2007, 24(3):7-12. WANG Yang, LI Peng, YU Yunhua, et al. Interfacial properties of phosphorous acid modified Kevlar fiber reinforced epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2007, 24(3):7-12(in Chinese). |
[21] | HWANG H S, PATTERSON B A, MALAKOOTI M H, et al. Modification of pullout behavior of Kevlar fabric by zinc oxide nanowire reinforcement[J]. American Society of Mechanical Engineers, 2013:V009T10A012. |
[22] | 王君, 李诚, 郑强, 等. LiCl处理对芳纶纤维表面结构与性能的影响[J]. 复合材料学报, 2016, 33(4):704-713. WANG Jun, LI Cheng, ZHENG Qiang, et al. Effects of LiCl treatment on surface structure and properties of Kevlar fibers[J]. Acta Materiae Compositae Sinica, 2016, 33(4):704-713(in Chinese). |