|
- 2018
聚醚醚酮和烯丙基化合物改性双马来酰亚胺复合材料微观结构及力学性能
|
Abstract:
采用浓H2SO4氧化聚醚醚酮(PEEK)得到磺化聚醚醚酮(SPEEK),以3,3'-二烯丙基双酚A (BBA)、双酚A双烯丙基醚(BBE)为活性稀释剂、SPEEK为改性剂、双马来酰亚胺(BMI)树脂为基体,浇注成型制备SPEEK/BBA-BBE-BMI复合材料,同时研究了SPEEK的改性效果及复合材料微观形貌与力学性能。结果表明:SPEEK改性效果较好,在FTIR中存在明显的磺酸基团特征峰,SEM和能谱分析表明,SPEEK微观形貌变化明显,硫元素含量较高;SPEEK/BBA-BBE-BMI复合材料的微观形貌显示,SPEEK在基体中呈现直径为2 μm左右的多孔状两相结构,且分散均匀,此多孔结构改善了复合材料的断裂形貌,由脆性断裂转变为韧性断裂,当断裂纹遇到SPEEK组分时受阻而出现不规则发散,此变化会赋予复合材料更加优异的性能。力学性能测试结果显示,当SPEEK含量为5wt%时,SPEEK/BBA-BBE-BMI复合材料的弯曲强度和冲击强度达到最佳,分别为147.93 MPa和15.74 kJ/mm2,分别比基体提高了49.47%和66.21%。 Sulfonated poly (ether ether ketone) (SPEEK) was obtained by modifying poly(ether ether ketone) (PEEK) with concentrated H2SO4. the SPEEK/BBA-BBE-BMI composites were cast-molded, with bismaleimide (BMI) resin as the matrix, 3,3'-diallyl bisphenol A(BBA) and bisphenol A diallyl ether(BBE) as the reactive diluent, SPEEK as the modifier. The effects of SPEEK on the composites were studied. The micro-structure and mechanical properties of the SPEEK/BBA-BBE-BMI composites were examined. The results show that SPEEK produces better modification effect and obvious characteristic peaks of sulfonic acid groups appear in FTIR. SEM and EDS analysis reveale that the micro-structure changes clearly and the content of sulfur element is higher. The micro-structure of SPEEK/BBA-BBE-BMI composite displays that the SPEEK exhibits a porous two-phase structure with a diameter of about 2 μm in the matrix. The "honeycomb" structure changes the fracture morphology from brittle to ductile fracture. The irregular divergence occurre when the breakage encounters the SPEEK component, and this change could supply the composite more excellent properties. The results of mechanical properties for composite indicate that the flexural strength and impact strength of SPEEK/BBA-BBE-BMI composite with 5wt% SPEEK are the best (147.93 MPa and 15.74 kJ/mm2), 49.47% and 66.21% higher than that of the matrix, respectively. 哈尔滨创新人才专项(2015RAXXJ029)
[1] | OHTSUKA K, KIMURA H, IKESHITA S, et al. Novel bismaleimide/diallylbisphenol A resin modified with multifunctional thiol containing isocyanuric ring and long-chain aliphatic unit[J]. High Performance Polymers, 2016, 28(5):591-599. |
[2] | 张思, 张扬, 张宝艳. 双马来酰亚胺树脂增韧改性研究进展[J]. 科技导报, 2016, 34(8):31-34. ZHANG S, ZHANG Y, ZHANG B Y. Research on toughening modification of bismaleimide resin[J]. Science & Technology Review, 2016, 34(8):31-34(in Chinese). |
[3] | IREDALE R J, WARD C, HAMERTON I. Modern advances in bismaleimide resin technology:A 21st century perspective on the chemistry of addition polyimides[J]. Progress in Polymer Science, 2017, 69:1-21. |
[4] | PHAM Q T, HSU J M, SHAO W J, et al. Mechanisms and kinetics of isothermal polymerization of N, N'-bismaleimide-4, 4'-diphenylmethane with 5, 5-dimethylbarbituric acid in the presence of triphenylphosphine[J]. Thermochimica Acta, 2017, 655:234-241. |
[5] | HE S, JIA H, LIN Y, et al. Effect of clay modification on the structure and properties of sulfonated poly(ether ether ketone)/clay nanocomposites[J]. Polymer Composites, 2016, 37(9):2632-2638. |
[6] | DOLO G, FéREC J, CARTIé D, et al. Model for thermal degradation of carbon fiber filled poly(ether ether ketone)[J]. Polymer Degradation and Stability, 2017, 143:20-25. |
[7] | PRABHU N V, SANGEETHA D. Characterization and performance study of sulfonated poly ether ether ketone/Fe3O4 nano composite membrane as electrolyte for microbial fuel cell[J]. Chemical Engineering Journal, 2014, 243:564-571. |
[8] | OROUJZADEH M, MEHDIPOUR-ATAEI S. Anisotropic membranes from electrospun mats of sulfonated/nonsulfonated poly(ether ketone)s containing ion-rich paths as proton exchange membranes[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65(7):330-336. |
[9] | 中国国家标准化管理委员会. 树脂浇铸体性能试验方法:GB/T 2567-2008[S]. 北京:中国标准出版社, 2008. Standardization Administration of the People's Republic of China. Test methods for properties of resin casting boby:GB/T 2567-2008[S]. Beijing:China Standards Press, 2008(in Chinese). |
[10] | DOAN J, KINGSTON E, KENDRICK I, et al. Theoretical and experimental infrared spectra of hydrated and dehydrated sulfonated poly(ether ether ketone)[J]. Polymer, 2014, 55(18):4671-4676. |
[11] | ANDERSON K, KINGSTON E, ROMEO J, et al. Infrared spectroscopy of ion-induced cross-linked sulfonated poly(ether ether ketone)[J]. Polymer, 2016, 93:65-71. |
[12] | 胡兵. 改性聚醚醚酮増韧环氧树脂的研究[D]. 武汉:武汉理工大学, 2007. HU B. Study on modified-poly(ether ether ketone) toughening epoxy resins[D]. Wuhan:Wuhan University of Technology, 2007(in Chinese). |
[13] | SUN S, GUO M, YI X, et al. Preparation and characterization of a naphthalene-modified poly(aryl ether ketone) and its phase separation morphology with bismaleimide resin[J]. Polymer Bulletin, 2017, 74(5):1519-1533. |
[14] | 曾少华, 申明霞, 段鹏鹏, 等. 碳纳米管-玻璃纤维织物增强环氧复合材料的结构与性能[J]. 材料工程, 2017, 45(9):38-44. ZENG S H, SHEN M X, DUAN P P, et al. Structure and property of carbon nanotubes attached glass fabric reinforced epoxy composites[J]. Journal of Materials Engineering, 2017, 45(9):38-44(in Chinese). |
[15] | 安学锋, 张晨乾. PES颗粒层间增韧碳纤维/双马树脂RTM复合材料[J]. 复合材料学报, 2013, 30(s1):65-69. AN X F, ZHANG C Q. CF/BMI RTM composite materials toughened by interlayers of PES particles[J]. Acta Materiae Compositae Sinica, 2013, 30(s1):65-69(in Chinese). |
[16] | BABKIN A V, ERDNI-GORYAEV E M, SOLOPCHENKO A V, et al. Mechanical and thermal properties of modified bismaleimide matrices toughened by polyetherimides and polyimide[J]. Polymers for Advanced Technologies, 2016, 27(6):774-780. |
[17] | WANG C, LIU L. N-phenyl maleimide grafted MWNT/bismaleimide-allyl bisphenol A nanocomposites:Improved MWNT dispersion, resin reactivity and composite mechanical strength[J]. Materials Letters, 2017, 194:38-41. |
[18] | QIU J, WU Q Q, JIN L. Effect of hyperbranched polyethyleneimine grafting functionalization of carbon nanotubes on mechanical, thermal stability and electrical properties of carbon nanotubes/bismaleimide composites[J]. RSC Advances, 2016, 6(98):96245-96249. |
[19] | 曹俊, 王洋, 张博明. 有机黏土对碳纤维/聚醚砜-环氧复合材料层间断裂韧性的影响[J]. 复合材料学报, 2016, 33(10):2141-2150. CAO J, WANG Y, ZHANG B M. Effects of organoclay on interlaminar fracture toughness of carbon fiber/polyethersulfone-epoxy composites[J]. Acta Materiae Compositae Sinica, 2016, 33(10):2141-2150(in Chinese). |
[20] | SIPAUT C S, MANSA R F, PADAVETTAN V, et al. The effect of surface modification of silica nanoparticles on the morphological and mechanical properties of bismaleimide/diamine matrices[J]. Advances in Polymer Technology, 2015, 34(2):21492. |
[21] | GU J, LIANG C, DANG J, et al. Ideal dielectric thermally conductive bismaleimide nanocomposites filled with polyhedral oligomeric silsesquioxane functionalized nanosized boron nitride[J]. RSC Advances, 2016, 6(42):35809-35814. |
[22] | 中国国家标准化管理委员会. 塑料:简支梁冲击性能的测定:GB/T 1043.1-2008[S]. 北京:中国标准出版社, 2008. Standardization Administration of the People's Republic of China. Plastics:Determination of charpy impact properties:GB/T 1043.1-2008[S]. Beijing:China Standards Press, 2008(in Chinese). |
[23] | 李国丽, 彭公秋, 王迎芬, 等. 国产T700级碳纤维增强双马树脂基复合材料的力学性能[J]. 航空材料学报, 2017, 37(2):63-72. LI G L, PENG G Q, WANG Y F, et al. Mechanical properties of domestic T700 grade carbon fibers/QY9611 BMI matrix composites[J]. Journal of Aeronautical Materials, 2017, 37(2):63-72(in Chinese). |