全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

“S”形试件间歇性切削温度场建模与分析
Modeling and analysis of intermittent cutting temperature field for the “S” test specimens

DOI: 10.16511/j.cnki.qhdxxb.2015.22.004

Keywords: “S”形试件,切削温度场,间歇性模型,有限元法,热电偶,
“S&rdquo
,test specimen,cutting temperature field,intermittent model,finite element method (FEM),thermocouple

Full-Text   Cite this paper   Add to My Lib

Abstract:

切削温度场分析是“S”形试件切削热变形分析的基础。该文基于接触面瞬时相等原理建立了切削区域热量分配模型。结合热源法、热量分配模型和温度实验结果, 提出并建立了“S”形试件完整的间歇性切削温度场模型。通过热力耦合仿真实现了“S”形试件切削温度场预测, 给出了切削温度载荷和冷却液施加方法, 以及强制对流系数计算方法。在Parpas-PM20五轴数控加工中心上设计并搭建了基于热电偶法的“S”形试件加工过程温度场实验平台。切削热有限元仿真与实验研究结果验证了切削温度场分析方法和切削温度场预测结果的准确性。
Abstract:Cutting temperature distributions were analyzed to determine the thermal deformation of “S” testing specimens. The cutting temperature field model was based on the heat distribution ratio for the tool-workpiece contact area. The intermittent cutting temperature model was based on the actual cutting process by combining heat sources, the heat distribution, and temperature measurements. The cutting heat distribution was optimized and the coolant application was simplified to a simple forced convection heat transfer coefficient. These boundary conditions were used in a finite element simulation of the cutting heat in “S” test specimens with the results verified against temperature measurements using thermocouples on a Parpas-PM20 five-axis computer numerical control (CNC) machine tool.

References

[1]  边志远, 丁杰雄, 赵旭东. 基于“S”件的五轴数控机床加工性能综合评价方法研究[J]. 组合机床与自动化加工技术, 2015, 2(1): 86-89.BIAN Zhiyuan, DING Jiexiong, ZHAO Xudong. Research on comprehensive evaluation of processing properties for five-axis CNC machine tool based on the “S” shaped test piece [J]. Modular Machine Tool & Automatic Manufacturing Technique, 2015, 2(1): 86-89. (in Chinese)
[2]  王伟, 张信, 郑从志. 航空复杂曲面加工精度预测及影响因素分析[J]. 电子科技大学学报, 2014, 43(5): 787-793.WANG Wei, ZHANG Xin, ZHENG Congzhi. Analysis for machining precision prediction and influencing factors of complex surface in aviation [J]. Journal of University of Electronic Science and Technology of China, 2014, 43(5): 787-793. (in Chinese)
[3]  王伟, 郑从志, 张信. 基于多误差源耦合的五轴数控铣床加工误差综合预测及评判[J]. 中国机械工程, 2015, 26(1): 85-91.WANG Wei, ZHENG Congzhi, ZHANG Xin. Prediction on machining accuracy of five-axis milling tool for multiple error source coupling [J]. China Mechanical Engineering, 2015, 26(1): 85-91. (in Chinese)
[4]  彭志军, 刘大炜, 宋智勇. 一种五轴联动机床动态精度检测及优化方法[J]. 制造技术与机床, 2013, 8(1): 35-39.PENG Zhijun, LIU Dawei, SONG Zhiyong. A measuring and optimizing method of five-axis movement accuracy of CNC machine tools [J]. Manufacturing Technology and Machine Tool, 2013, 8(1): 35-39. (in Chinese)
[5]  Richardson D J, Keavey M A, Dailami F. Modelling of cutting induced workpiece temperatures for dry milling [J]. International Journal of Machine Tools & Manufacture, 2006, 46(1): 1139-1145.
[6]  TANG Ying. Theoretical modeling of cutting temperature in high-speed end milling process for die/mold machining [J]. Journal of University of Science and Technology Beijing, 2005, 12(1): 90-95.
[7]  Mackerle J. Finite element analysis and simulation of machining: an addendum: A bibliography (1996-2002) [J]. International Journal of Machine Tools & Manufacture, 2003, 43(1): 103-114.
[8]  胡韦华, 王秋成, 胡晓冬, 等. 切削加工过程数值模拟的研究进展[J]. 南京航空航天大学学报, 2005, 37(1): 194-198.HU Weihua, WANG Qiucheng, HU Xiaodong, et al. Numerical simulation of cutting process: An overview [J]. Journal of Nanjing University of Aeronautics & Astronautics, 2005, 37(1): 194-198. (in Chinese)
[9]  许兆美, 汪通悦, 裴旭. Al<sub>2</sub>O<sub>3</sub>陶瓷激光多道铣削温度场有限元模拟[J]. 红外与激光工程, 2015, 44(2): 477-481.XU Zhaomei, WANG Tongyue, PEI Xu. Finite element simulation of thermal distribution in laser multi-track milling of Al<sub>2</sub>O<sub>3</sub> ceramics [J]. Infrared and Laser Engineering, 2015, 44(2): 477-481.(in Chinese)
[10]  侯军明, 汪木兰, 王保升. 基于整体刀具的铣削加工温度有限元分析[J]. 机床与液压, 2014, 42(21): 125-128.HOU Junming, WANG Mulan, WANG Baosheng. Milling temperature analysis based on solid cutter by FEM [J]. Machine Tool & Hydraulics, 2014, 42(21): 125-128.(in Chinese)
[11]  何振威, 全燕鸣. 基于有限元模拟的高速切削中切削热的研究[J]. 工具技术, 2006, 40(3): 60-63.HE Zhenwei, QUAN Yanming. Study on cutting heat in high-speed cutting based on FEM simulation [J]. Tool Engineering, 2006, 40(3): 60-63. (in Chinese)
[12]  LIN Sen, PENG Fangyu. An investigation of workpiece temperature variation in end milling [J]. International Journal of Machine Tool & Manufacture, 2013, 73(1): 71-86.
[13]  蔡在亶. 金属切削原理[M]. 上海: 同济大学出版社, 1994: 73-80.CAI Zaidan. Principles of Metal Cutting [M]. Shanghai: Tongji University Press, 1994: 73-80. (in Chinese)
[14]  Venuvinod P K, Lau W S. Estimation of rake temperatures in free oblique cutting [J]. International Journal of Machine Tool Design and Research, 1986, 26(1): 1-14.
[15]  谭靓, 张定华, 姚倡锋. 刀具几何参数对钛合金铣削力和表面完整性的影响[J]. 中国机械工程, 2015, 26(6): 737-742.TAN Liang, ZHANG Dinghua, YAO Changfeng. Influence of tool geometrical parameters on milling force and surface integrity in milling titanium alloy [J]. China Mechanical Engineering, 2015, 26(6): 737-742.(in Chinese)
[16]  Hamid A A, Wifi A S, Gallab M. A three dimensional finite element thermal-mechanical analysis of intermittent cutting process [J]. Journal of Materials Processing Technology, 1996, 56(4): 643-654.
[17]  Hadad M J, Sadeghi B. Thermal analysis of minimum quantity lubrication-MQL grinding process [J]. International Journal of Machine Tools & Manufacture, 2012, 63(4): 1-15.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133