采用密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)方法研究了9个新的中氮茚[3, 4, 5-ab]异吲哚(INI)为给体的染料敏化剂性质.对影响电池效率的光捕获效率、电子注入、染料再生和电荷复合等重要因素与D5和D9染料进行了对比.计算表明,设计的INI系列敏化剂在440-500 nm内有最大吸收峰,表现出明显的电荷分离特征, INI2具有比D9染料更高的最大理论短路电流. Fukui反应指数计算指出INI2的亲核加成最易实现.染料分子在二氧化钛(101)面吸附计算表明,染料INI2以间接注入途径实现电子注入.综合计算结果,中氮茚INI染料有希望作为性能优良的染料敏化剂而得到应用. Nine new D-π-A metal-free sensitizers INI1-INI9 with indolizino [3, 4, 5-ab] isoindole (INI) as electronic donor were investigated using the density functional theory (DFT) and time-dependent DFT calculations. Compared to D5 and D9, some major factors affecting the performance of the cell, including light harvesting, electron injection, dye regeneration, and charge recombination are taken into consideration. Calculations show that these novel INI-based sensitizers have an absorption maximum at 440-500 nm when π conjugated bridge attached at different position of aromatic ring and an excellent charge separation characters. INI2 shows better performance than that of D9 due to the theoretical maximum short-circuit current density of 13.26 mA·cm-2. Fortunately, condensed Fukui function calculation suggested that the INI2 be easiest to obtain due to a largest nucleophilic index at 2 position of INI aromatic ring. Based on the calculations of dyes adsorption on TiO2 cluster, indirect electron injection may be the main path from dye to TiO2 for INI2 and D5. Our calculations indicate that the INI dyes will be promising candidates for fabrication of the high performance dye-sensitized solar cells
14 Ito S. ; Zakeeruddin S. M. ; Humphry-Baker R. ; Liska P. ; Charvet R. ; Comte P. ; Nazeeruddin M. K. ; Péchy P. ; Takata M. ; Miura H. Adv. Mater 2006, 18 (9), 1202. doi: 10.1002/adma.200502540
[4]
20 Perdew J. P. ; Burke K. ; Ernzerhof M. Physical Review Letters 1996, 77 (18), 3865. doi: 10.1103/PhysRevLett.77.3865
[5]
25 Chai J. D. ; Head-Gordon M. Phys. Chem. Chem. Phys 2008, 10 (44), 6615. doi: 10.1039/b810189b
[6]
26 Barone V. ; Cossi M. J. Phys. Chem. A 1998, 102 (11), 1995. doi: 10.1021/jp9716997
[7]
27 Lu T. ; Chen F. J. Comput. Chem 2012, 33 (5), 580. doi: 10.1002/jcc.v33.5
[8]
28 Sanchez-de-Armas R. ; San Miguel M. A. ; Oviedo J. ; Sanz J. F. Phys. Chem. Chem. Phys 2012, 14 (1), 225. doi: 10.1039/C1CP22058F
[9]
29 Zhang J. ; Li H.B. ; Sun S. L. ; Geng Y. ; Wu Y. ; Su Z. M. J. Mater. Chem 2012, 22 (2), 568. doi: 10.1039/C1JM13028E
[10]
42 Laurent A. D. ; Adamo C. ; Jacquemin D. Phys. Chem. Chem. Phys 2014, 16 (28), 14334. doi: 10.1039/c3cp55336a
47 Vlachopoulos N. ; Liska P. ; Augustynski J. ; Gr?tzel M. J. Am. Chem. Soc 1988, 110 (4), 1216. doi: 10.1021/ja00212a033
[14]
51 Daeneke T. ; Mozer A. J. ; Uemura Y. ; Makuta S. ; Fekete M. ; Tachibana Y. ; Koumura N. ; Bach U. ; Spiccia L. J. Am. Chem. Soc 2012, 134 (41), 16925. doi: 10.1021/ja3054578
[15]
52 Liu S. B. Acta Phys. -Chim. Sin 2009, 25, 590. doi: 10.3866/PKU.WHXB20090332
1 O'Regan B. ; Gr?tzel M. Nature 1991, 353 (6346), 737. doi: 10.1038/353737a0
[18]
2 Yella A. ; Lee H. W. ; Tsao H. N. ; Yi C. ; Chandiran A. K. ; Nazeeruddin M. K. ; Diau E. W. G. ; Yeh C. Y. ; Zakeeruddin S. M. ; Gr?tzel M. Science 2011, 334 (6056), 629. doi: 10.1126/science.1209688
[19]
3 Mishra A. ; Fischer M. K. R. ; B?uerle P. Angew. Chem. Int. Edit 2009, 48 (14), 2474. doi: 10.1002/anie.v48:14
[20]
4 He J. J. ; Chen S. X. ; Wang T. T. ; Zeng H. P. Chin. J. Org. Chem 2012, 32 (3), 472.
[21]
何俊杰; 陈舒欣; 王婷婷; 曾和平. 有机化学, 2012, 32 (3), 472.
[22]
7 Wang Z. S. ; Cui Y. ; Hara K. ; Dan-oh Y. ; Kasada C. ; Shinpo A. Adv. Mater 2007, 19 (8), 1138. doi: 10.1002/adma.200601020
[23]
11 Amacher A. ; Yi C. ; Yang J. ; Bircher M. P. ; Fu Y. ; Cascella M. ; Gratzel M. ; Decurtins S. ; Liu S. X. Chem. Commun 2014, 50 (49), 6540. doi: 10.1039/C4CC02696A
[24]
12 Geng Y. ; Pop F. ; Yi C. ; Avarvari N. ; Gratzel M. ; Decurtins S. ; Liu S. X. New J.Chem 2014, 38 (7), 3269. doi: 10.1039/c4nj00428k
[25]
17 Hagberg, D. P.; Edvinsson, T.; Marinado, T.; Boschloo, G.; Hagfeldt, A.; Sun, L. Chem. Commun. 2006, 2245. doi: 10.1039/b603002e
[26]
24 Tawada, Y.; Tsuneda, T.; Yanagisawa, S.; Yanai, T.; Hirao, K. J. Chem. Phys. 2004, 120 (18), 8425. doi: 10.1063/1.1688752
[27]
5 Qu S. Y. ; Hua J. L. ; Tian H. Sci. Sin. Chim 2012, 42, 567.
[28]
瞿三寅; 花建丽; 田禾. 中国科学:化学, 2012, 42, 567.
[29]
6 Pei J. ; Liang M. ; Chen J. ; Tao Z. L. ; Xu W. Acta Phys. -Chim. Sin 2008, 24, 1950. doi: 10.1016/S1872-1508(08)60077-7
9 Wu W. J. ; Yang J. B. ; Hua J. L. ; Tang J. ; Zhang L. ; Long Y. T. ; Tian H. J. Mater. Chem 2010, 20 (9), 1772. doi: 10.1039/b918282a
[32]
10 Martinez-Diaz M. V. ; de la Torre G. ; Torres T. Chem. Commun 2010, 46 (38), 7090. doi: 10.1039/c0cc02213f
[33]
13 Chen X. M. ; Jia C. Y. ; Wan Z. Q. ; Yao X. J. Acta Phys. -Chim. Sin 2014, 30, 273. doi: 10.3866/PKU.WHXB201311262
[34]
15 Wu Y. ; Marszalek M. ; Zakeeruddin S. M. ; Zhang Q. ; Tian H. ; Gr?tzel M. ; Zhu W. Energy Environ. Sci 2012, 5 (8), 8261. doi: 10.1039/c2ee22108j
[35]
16 Mitsumori T. ; Bendikov M. ; Dautel O. ; Wudl F. ; Shioya T. ; Sato H. ; Sato Y. J. Am. Chem. Soc 2004, 126 (51), 16793. doi: 10.1021/ja049214x
[36]
18 Hagberg, D. P.; Yum, J. H.; Lee, H.; De Angelis, F.; Marinado, T.; Karlsson, K. M.; Humphry-Baker, R.; Sun, L.; Hagfeldt, A.; Gr?tzel, M.; Nazeeruddin, M. K. J. Am. Chem. Soc. 2008, 130. doi: 10.1021/ja800066y
[37]
19 Becke A. D. J. Chem. Phys 1993, 98 (7), 5648. doi: 10.1063/1.464913
[38]
21 Lynch B. J. ; Fast P. L. ; Harris M. ; Truhlar D. G. J. Phys. Chem. A 2000, 104 (21), 4811. doi: 10.1021/jp000497z
[39]
22 Zhao Y. ; Truhlar D. G. J. Phys. Chem. A 2006, 110 (15), 5121.
[40]
23 Yanai T. ; Tew D. P. ; Handy N. C. Chem. Phys. Lett 2004, 393 (1-3), 51. doi: 10.1016/j.cplett.2004.06.011
[41]
30 Zhang J. ; Kan Y. H. ; Li H. B. ; Geng Y. ; Wu Y. ; Su Z. M. Dyes Pigments 2012, 95 (2), 313. doi: 10.1016/j.dyepig.2012.05.020
[42]
31 Pastore M. ; Angelis F. D. ACS Nano 2009, 4 (1), 556. doi: 10.1021/nn901518
[43]
32 Soler, J. M.; Artacho, E.; Gale; J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. J. Phys.: -Condes. Matter 2002, 14 (11), 2745. doi: 10.1088/0953-8984/14/11/302
[44]
33 Ordejón P. ; Artacho E. ; Soler J. M. Phys. Rev. B 1996, 53 (16), R10441.
[45]
34 Gratzel M. Nature 2001, 414 (6861), 338.
[46]
35 Cahen D. ; Hodes G. ; Gr?tzel M. ; Guillemoles J. F. ; Riess I. J. Phys. Chem. B 2000, 104 (9), 2053. doi: 10.1021/jp993187t
[47]
36 Kim B. G. ; Zhen C. G. ; Jeong E. J. ; Kieffer J. ; Kim J. Adv. Funct. Mater 2012, 22 (8), 1606. doi: 10.1002/adfm.v22.8
[48]
37 Jacquemin D. ; Perpète E. A. ; Scuseria G. E. ; Ciofini I. ; Adamo C. J. Chem. Theory. Comput 2008, 4 (1), 123.
[49]
38 Dreuw A. ; Head-Gordon M. J. Am. Chem. Soc 2004, 126 (12), 4007. doi: 10.1021/ja039556n
45 Le Bahers T. ; Adamo C. ; Ciofini I. J. Chem. Theory. Comput 2011, 7 (8), 2498. doi: 10.1021/ct200308m
[57]
48 Jiao, Y.; Ma, W.; Meng, S. Chem. Phys. Lett. 2013, 586 , 97.
[58]
49 Zhang J. Z. ; Zhang J. ; Li H. B. ; Wu Y. ; Xu H. L. ; Zhang M. ; Geng Y. ; Su Z. M. J.Power Sources 2014, 267 (300)
[59]
50 Ma W. ; Jiao Y. ; Meng S. J. Phys. Chem. C 2014, 118 (30), 16447. doi: 10.1021/jp410982e
[60]
53 Parr R. G. ; Yang W. J. Am. Chem. Soc 1984, 106 (14), 4049. doi: 10.1021/ja00326a036
[61]
54 Makedonas C. ; Mitsopoulou C. A. European Journal of Inorganic Chemistry 2006 2006, (3), 590.
[62]
55 Clifford J. N. ; Palomares E. ; Nazeeruddin M. K. ; Gr?tzel M. ; Nelson J. ; Li X. ; Long N. J. ; Durrant J. R. J. Am. Chem. Soc 2004, 126 (16), 5225. doi: 10.1021/ja039924n