全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 


DOI: 10.3866/PKU.WHXB201805091

Full-Text   Cite this paper   Add to My Lib

Abstract:

非富勒烯电子受体由于其吸收强,能级可调,稳定性好等优点,近年来受到研究者的广泛关注,并且光电转换效率已突破14%。在本研究中,我们设计并合成了一种结构简单,易于合成的非稠环结构的非富勒烯电子受体ICTP。通过合理的结构设计,利用分子内的非共价作用力,实现了高的空间平面性。其在长波长区域宽且强的吸收和合适的能级水平,使得ICTP适合与许多聚合物给体材料搭配,制备太阳能电池。基于PBDB-T:ICTP的聚合物太阳能电池取得了4.43%的光电转换效率和0.97 V的开路电压。
Non-fullerene electron acceptors have attracted enormous attention of the research community owing to their advantages of optoelectronic and chemical tunabilities for promoting high-performance polymer solar cells (PSCs). Among them, fused-ring electron acceptors (FREAs) are the most popular ones with the good structural planarity and rigidity, which successfully boost the power conversion efficiencies (PCEs) of PSCs to over 14%. In considering the cost-control of future scale-up applications, it is also worthwhile to explore novel structures that are easy to synthesize and still maintain the advantages of FREAs. In this work, we design and synthesize a new electron acceptor with an unfused backbone, 5, 5'-((2, 5-bis((2-hexyldecyl)oxy)-1, 4-phenylene)bis(thiophene-2-yl))bis(methanylylidene)) bis(3-oxo-2, 3-dihydro-1H-indene-2, 1-diylidene))dimal-ononitrile (ICTP), which contains two thiophenes and one alkoxy benzene as the core and 2-(3-oxo-2, 3-dihydroinden-1-ylidene) malononitrile (IC) as the terminal groups. The synthetic route to ICTP involves only three steps, with high yields. Density functional theory calculations indicate that the non-covalent interactions, O…H and O…S, help reinforce the space conformation between the central core and the terminals. ICTP shows broad and strong absorption in the long-wavelength range between 500 and 760 nm. The highest occupied molecular orbital and lowest unoccupied molecular orbital levels of ICTP were measured to be -5.56 and -3.84 eV by cyclic voltammetry. The suitable absorption and energy levels make ICTP a good acceptor candidate for medium bandgap polymer donors. The best devices based on PBDB-T:ICTP showed a PCE of 4.43%, with an open circuit voltage (VOC) of 0.97 V, a short circuit current density (JSC) of 8.29 mA?cm-2, and a fill factor (FF) of 0.55, after adding 1% 1, 8-diiodooctane (DIO) as the solvent additive. Atomic force microscopy revealed that DIO could ameliorate the strong aggregation in the blended film and lead to a smoother film surface. The hole and electron mobilities of the optimized device were measured to be 9.64 and 2.03 × 10-5 cm2?V-1?s-1, respectively, by the space-charge-limited current method. The relatively low mobilities might be responsible for the moderate PCE. Further studies can be performed to enlarge the conjugation length by

References

[1]  12 Huang J. ; Zhang X. ; Zheng D. ; Yan K. ; Li C. Z. ; Yu J. Solar RRL 2017, 1, 1600008. doi: 10.1002/solr.201600008
[2]  15 Xu J. Q. ; Liu W. ; Liu S. Y. ; Ling J. ; Mai J. ; Lu X. ; Li C. Z. ; Jen A. K. Y. ; Chen H. Sci. China Chem. 2017, 60, 561. doi: 10.1007/s11426-016-9003-9
[3]  22 Liu J. ; Chen S. ; Qian D. ; Gautam B. ; Yang G. ; Zhao J. ; Bergqvist J. ; Zhang F. ; Ma W. ; Ade H. ; et al Nat. Energy 2016, 1, 16089. doi: 10.1038/nenergy.2016.89
[4]  25 Jiang K. ; Zhang G. ; Yang G. ; Zhang J. ; Li Z. ; Ma T. ; Hu H. ; Ma W. ; Ade H. ; Yan H. Adv. Energy Mater. 2018, 8, 1701370. doi: 10.1002/aenm.201701370
[5]  26 Jiang W. ; Yu R. ; Liu Z. ; Peng R. ; Mi D. ; Hong L. ; Wei Q. ; Hou J. ; Kuang Y. ; Ge Z. Adv. Mater. 2017, 29, 1703005. doi: 10.1002/adma.201703005
[6]  27 Zhu J. ; Ke Z. ; Zhang Q. ; Wang J. ; Dai S. ; Wu Y. ; Xu Y. ; Lin Y. ; Ma W. ; You W. ; Zhan X. Adv. Mater. 2017, 29, 1704713. doi: 10.1002/adma.201704713
[7]  28 Zuo L. ; Yu J. ; Shi X. ; Lin F. ; Tang W. ; Jen A. K. Adv. Mater. 2017, 29, 1702547. doi: 10.1002/adma.201702547
[8]  29 Cui Y. ; Yao H. ; Gao B. ; Qin Y. ; Zhang S. ; Yang B. ; He C. ; Xu B. ; Hou J. J. Am. Chem. Soc. 2017, 139, 7302. doi: 10.1021/jacs.7b01493
[9]  30 Liu F. ; Zhou Z. ; Zhang C. ; Zhang J. ; Hu Q. ; Vergote T. ; Liu F. ; Russell T. P. ; Zhu X. Adv. Mater. 2017, 29, 1606574. doi: 10.1002/adma.201606574
[10]  31 Dai S. ; Zhao F. ; Zhang Q. ; Lau T. K. ; Li T. ; Liu K. ; Ling Q. ; Wang C. ; Lu X. ; You W. ; et al J. Am. Chem. Soc. 2017, 139, 1336. doi: 10.1021/jacs.6b12755
[11]  32 Li S. ; Zhan L. ; Liu F. ; Ren J. ; Shi M. ; Li C. Z. ; Russell T. P. ; Chen H. Adv. Mater. 2018, 30, 1705208. doi: 10.1002/adma.201705208
[12]  33 Zhang Z. ; Liu Z. ; Yan K. ; Li H. ; Liu W. ; Lu X. ; Li H. ; Chen H. ; Li C. Z. Acta Polym. Sin. 2018, (2), 295. doi: 10.11777/j.issn1000-3304.2018.17253
[13]  章中强; 刘志玺; 严康荣; 李焕斌; 刘文清; 路新慧; 李寒莹; 陈红征; 李昌治. 高分子学报, 2018, (2), 295. doi: 10.11777/j.issn1000-3304.2018.17253
[14]  34 Ullah F. ; Qian S. ; Yang W. ; Shah M. N. ; Zhang Z. ; Chen H. ; Li C. Z. Chinese Chem. Lett. 2017, 28, 2223. doi: 10.1016/j.cclet.2017.08.009
[15]  35 Shah M. N. ; Zhang S. ; Sun Q. ; Ullah F. ; Chen H. ; Li C. Z. Tetrahedron Lett. 2017, 58, 2975. doi: 10.1016/j.tetlet.2017.06.056
[16]  36 Nguyen T. L. ; Choi H. ; Ko S. J. ; Uddin M. A. ; Walker B. ; Yum S. ; Jeong J. E. ; Yun M. H. ; Shin T. J. ; Hwang S. ; et al Energy Environ. Sci. 2014, 7, 3040. doi: 10.1039/c4ee01529k
[17]  37 Bin H. ; Gao L. ; Zhang Z. G. ; Yang Y. ; Zhang Y. ; Zhang C. ; Chen S. ; Xue L. ; Yang C. ; Xiao M. ; et al Nat. Commun. 2016, 7, 13651. doi: 10.1038/ncomms13651
[18]  39 Yu T. ; Xu X. ; Zhang G. ; Wan J. ; Li Y. ; Peng Q. Adv. Funct. Mater. 2017, 29, 1701491. doi: 10.1002/adfm.201701491
[19]  4 Liu W. ; Li S. ; Huang J. ; Yang S. ; Chen J. ; Zuo L. ; Shi M. ; Zhan X. ; Li C. Z. ; Chen H. Adv. Mater. 2016, 28, 9729. doi: 10.1002/adma.201603518
[20]  7 Han J. ; Liang Q. ; Qu Y. ; Liu J. ; Han Y. Acta Phys. -Chim. Sin. 2018, 34, 391. doi: 10.3866/PKU.WHXB201709131
[21]  韩杰; 梁秋菊; 曲轶; 刘剑刚; 韩艳春. 物理化学学报, 2018, 34, 391. doi: 10.3866/PKU.WHXB201709131
[22]  10 Cui Y. ; Yao H ; Yang C. ; Zhang S. ; Hou J. Acta Polym. Sin. 2018, (2), 223. doi: 10.11777/j.issn1000-3304.2018.17297
[23]  崔勇; 姚惠峰; 杨晨熠; 张少青; 侯剑辉. 高分子学报, 2018, (2), 223. doi: 10.11777/j.issn1000-3304.2018.17297
[24]  11 Vohra V. ; Kawashima K. ; Kakara T. ; Koganezawa T. ; Osaka I. ; Takimiya K. ; Murata H. Nat. Photon. 2015, 9, 403. doi: 10.1038/NPHOTON.2015.84
[25]  14 Xu J. ; Fu W. ; Yang S. ; Liu T. ; Li C. Z. ; Chen H. Acta Polym. Sin. 2018, (2), 164. doi: 10.11777/j.issn1000-3304.2018.17251
[26]  17 Lin Y. ; Zhang Z. G. ; Bai H. ; Wang J. ; Yao Y. ; Li Y. ; Zhu D. ; Zhan X. Energy Environ. Sci. 2015, 8, 610. doi: 10.1039/c4ee03424d
[27]  18 Yao H. ; Chen Y. ; Qin Y. ; Yu R. ; Cui Y. ; Yang B. ; Li S. ; Zhang K. ; Hou J. Adv. Mater. 2016, 28, 8283. doi: 10.1002/adma.201602642
[28]  20 Yang Y. ; Zhang Z. G. ; Bin H. ; Chen S. ; Gao L. ; Xue L. ; Yang C. ; Li Y. J. Am. Chem. Soc. 2016, 138, 15011. doi: 10.1021/jacs.6b09110
[29]  21 Zhang Z. ; Liu W. ; Rehman T. ; Ju H. X. ; Mai J. ; Lu X. ; Shi M. ; Zhu J. ; Li C. Z. ; Chen H. J. Mater. Chem. A 2017, 5, 9649. doi: 10.1039/c7ta01554b
[30]  24 Lin Y. ; Zhao F. ; Wu Y. ; Chen K. ; Xia Y. ; Li G. ; Prasad S. K. K. ; Zhu J. ; Huo L. ; Bin H. ; et al Adv. Mater. 2017, 29, 1604155. doi: 10.1002/adma.201604155
[31]  41 Bin H. ; Zhang Z. G. ; Gao L. ; Chen S. ; Zhong L. ; Xue L. ; Yang C. ; Li Y. J. Am. Chem. Soc. 2016, 138, 4657. doi: 10.1021/jacs.6b01744
[32]  42 Zhao W. ; Qian D. ; Zhang S. ; Li S. ; Inganas O. ; Gao F. ; Hou J. Adv. Mater. 2016, 28, 4734. doi: 10.1002/adma.201600281
[33]  43 Elumalai N. K. ; Uddin A. Energy Environ. Sci. 2016, 9, 391. doi: 10.1039/c5ee02871j
[34]  1 Lin Y. ; Zhan X. Acc. Chem. Res. 2016, 49, 175. doi: 10.1021/acs.accounts.5b00363
[35]  2 Li S. ; Zhang Z. ; Shi M. ; Li C. Z. ; Chen H. Phys. Chem. Chem. Phys. 2017, 19, 3440. doi: 10.1039/c6cp07465k
[36]  3 Li S. ; Liu W. ; Li C. Z. ; Shi M. ; Chen H. Small 2017, 13, 1701120. doi: 10.1002/smll.201701120
[37]  6 Li S. X. ; Liu W. Q. ; Shi M. M. ; Mai J. Q. ; Lau T. K. ; Wan J. H. ; Lu X. H. ; Li C. Z. ; Chen H. Z. Energy Environ. Sci. 2016, 9, 604. doi: 10.1039/c5ee03481g
[38]  8 Wang B. ; Liu W. ; Li H. ; Mai J. ; Liu S. ; Lu X. ; Li H. ; Shi M. ; Li C. Z. ; Chen H. J. Mater. Chem. A 2017, 5, 9396. doi: 10.1039/c7ta02582c
[39]  13 He Z. ; Zhong C. ; Su S. ; Xu M. ; Wu H. ; Cao Y. Nat. Photon. 2012, 6, 593. doi: 10.1038/NPHOTON.2012.190
[40]  许景琦; 傅伟飞; 杨时达; 刘唐; 李昌治; 陈红征. 高分子学报, 2018, (2), 164. doi: 10.11777/j.issn1000-3304.2018.17251
[41]  16 Lin Y. ; Wang J. ; Zhang Z. G. ; Bai H. ; Li Y. ; Zhu D. ; Zhan X. Adv. Mater. 2015, 27, 1170. doi: 10.1002/adma.201404317
[42]  19 Lin Y. ; He Q. ; Zhao F. ; Huo L. ; Mai J. ; Lu X. ; Su C. J. ; Li T. ; Wang J. ; Zhu J. ; et al J. Am. Chem. Soc. 2016, 138, 2973. doi: 10.1021/jacs.6b00853
[43]  23 Zhang H. ; Li S. ; Xu B. ; Yao H. ; Yang B. ; Hou J. J. Mater. Chem. A 2016, 4, 18043. doi: 10.1039/c6ta07672f
[44]  38 Bin H. ; Zhong L. ; Yang Y. ; Gao L. ; Huang H. ; Sun C. ; Li X. ; Xue L. ; Zhang Z. G. ; Zhang Z. ; et al Adv. Energy Mater. 2017, 7, 1700746. doi: 10.1002/aenm.201700746
[45]  5 Lin Y. ; Zhan X. Mater. Horiz. 2014, 1, 470. doi: 10.1039/c4mh00042k
[46]  9 Zhang S. ; Qin Y. ; Zhu J. ; Hou J. Adv. Mater. 2018, 30, 1800868. doi: 10.1002/adma.201800868
[47]  40 Fan Q. ; Su W. ; Meng X. ; Guo X. ; Li G. ; Ma W. ; Zhang M. ; Li Y. Solar RRL 2017, 1, 1700020. doi: 10.1002/solr.201700020

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133