|
- 2019
原位透射电子显微镜观察电荷驱动的氧化物纳米颗粒水中自组装
|
Abstract:
以四氧化三钴Co3O4纳米棒为研究对象,我们利用液体环境透射电子显微镜,原位观察了四氧化三钴纳米棒在水中的自组装过程。研究发现在电子束辐照的水环境下,四氧化三钴纳米棒的晶面存在互补式自组装现象。随着纳米棒之间的距离越来越近,纳米棒之间的相对运动速率逐渐增加,纳米棒之间的相互作用力逐渐增加。通过进一步分析纳米棒的形貌发现,纳米棒的暴露晶面大多数为{100}、{110}以及{111}晶面,而Co3O4属于极性氧化物,这些晶面往往会带有一定的电荷。在液体环境下,正是由于这些易暴露面都带有不同大小的电荷,在晶面电荷的驱动下,电荷属性相反的四氧化三钴纳米棒会互相吸引,形貌结构上进行互补,实现快速驱动的纳米棒之间自组装。
The self-assembly of nanoparticles can effectively control morphology and surface exposure during materials processing and has promising potential applications in the synthesis and exploration of different types of materials. As the process often occurs in liquid solvents, it is difficult to observe and study the dynamic process and mechanism of the self-assembly of nanoparticles in situ. With the recent development of environmental transmission electron microscopy (TEM), researchers have been able to observe and study the dynamic processes of various chemical reactions in liquid environments in real time on the nanometer- and atomic scale. In this paper, we used advanced in situ liquid environmental TEM to characterize the self-assembly process of Co3O4 nanorods in water and study the mechanism of self-assembly. A self-assembly phenomenon of the Co3O4 nanorods in water was discovered under the influence of electron beam irradiation that caused a change in the dielectric constant and increased the electrical conductivity in the irradiated water. The movement of the nanorods was initiated and energized in the irradiated water. As the distance between the nanorods decreased, the drift velocity of the nanorods and the interaction force between them increased. By analyzing the nanorods' movement (including the distance and the rotation angle) as a function of time, the variation of the mean square displacement with respect to time was obtained. Based on the Stokes-Einstein equation, the driving force was estimated, and we found that the driving force increases with the decreasing distance and that the maximum value of the driving force is approximately 12 pN. By characterizing the morphology of the Co3O4 nanorods, we found that the exposed crystal facets of the nanorods are mostly in the {100}, {110}, and {111} planes. As Co3O4 is a polar metal oxide, these crystalline planes tend to carry certain electric charge according to the terminative Co or O atoms. In a conductive aqueous environment, it is because of these easily exposable surfaces with different surface charges that the Co3O4 nanorods will attract each other under the driving force of opposite electric charges. Furthermore, self-assembly of nanorods with a complementary morphology can
[1] | 4 Ma C. Y. ; Mu Z. ; Li J. J. ; Jin Y. G. ; Cheng J. ; Lu G. Q. ; Hao Z. P. ; Qiao S. Z. J. Am. Chem. Soc. 2010, 132 (8), 2608. doi: 10.1021/ja906274t |
[2] | 5 Thissen N. F. W. ; Verheijen M. A. ; Houben R. G. ; Marel C. ; Kessels W. M. M. ; Bol A. A. Carbon 2017, 398 doi: 10.1016/j.carbon.2017.06.001 |
[3] | 9 Chen Q. ; Cho H. ; Manthiram K. ; Yoshida M. ; Ye X. ; Alivisatos A. P. ACS Cent. Sci. 2015, 1, 33. doi: 10.1021/acscentsci.5b00001 |
[4] | 11 Zhang Y. C. ; Pan L. ; Liu J. ; Song J. ; Li Z. ; Zhang X. ; Wang L. ; Zhou J. Appl. Surf. Sci. 2017, 401, 241. doi: 10.1016/j.apsusc.2017.01.031 |
[5] | 15 Liao H. G. ; Cui L. K. ; Whitelam S. ; Zheng H. M. Science 2012, 336 (6084), 1011. doi: 10.1126/science.1219185 |
[6] | 16 Woehl T. J. ; Park C. ; Evans J. E. ; Arslan L. ; Ristenpart W. D. ; Browning N. D. Nano Lett. 2014, 14, 373. doi: 10.1021/nl4043328 |
[7] | 周晓琴; 张辉; 张泽; 陈新; 金传洪. 物理化学学报, 2017, 33, 458. doi: 10.3866/PKU.WHXB201701041 |
[8] | 27 Garrett B. C. ; Dixon D. A. ; Camaioni D. M. ; Chipman D. M. ; Johnson M. A. ; Jonah C. D. ; Kimmel G. A. ; Miller J. H. ; Rescigno T. N. ; Rossky P. J. ; et al Chem. Rev. 2005, 105, 355. doi: 10.1021/cr030453x |
[9] | 28 Orowan, E. Philosophical Magazine; Cavendisii Laboratory: Cambridge, UK, 2014. |
[10] | 7 Xia X. H. ; Tu J. P. ; Mai Y. J. ; Wang X. L. ; Gu C. D. ; Zhao X. B. J. Mater. Chem. 2011, 21, 9319. doi: 10.1039/C1JM10946D |
[11] | 8 Wang Y. C. ; Zhou T. ; Jiang K. ; Dai P. M. ; Peng Z. ; Tang J. ; Kong B. ; Cai W. B. ; Yang Z. Q. ; Zheng G. F. Adv. Energy Mater. 2014, 4, 1400696. doi: 10.1002/aenm.201400696 |
[12] | 10 He T. ; Chen D. ; Jiao X. ; Wang Y. Adv. Mater. 2006, 18, 1078. doi: 10.1002/adma.200501864 |
[13] | 12 Takada S. ; Fujii M. ; Kohiki S. Nano Lett. 2001, 7, 379. doi: 10.1021/nl015538x |
[14] | 13 Elbert K. C. ; Jishkariani D. ; Wu Y. ; Lee J. ; Donnio B. ; Murray C. B. Chem. Mater. 2017, 29, 8737. doi: 10.1021/acs.chemmater.7b02928 |
[15] | 14 Chen X. ; Li C. ; Ke K. Chin. Sci. Bull. 2017, 62, 2866. doi: 10.1360/N972016-01029 |
[16] | 17 Zhou X. ; Zhang H. ; Zhang Z. ; Chen X. ; Jing C. Acta Phys. -Chim. Sin. 2017, 33, 458. doi: 10.3866/PKU.WHXB201701041 |
[17] | 18 Smeets P. J. M. ; Cho K. R. ; Kempen R. G. E. ; Sommerdijk N. ; Yoreo J. Nat. Mater. 2015, 394 doi: 10.1038/nmat4193 |
[18] | 19 Dong G. ; Jin C. Acta Phys. -Chim. Sin. 2019, 35, 15. doi: 10.3866/PKU.WHXB201712062 |
[19] | 董干兴; 金传洪. 物理化学学报, 2019, 35, 15. doi: 10.3866/PKU.WHXB201712062 |
[20] | 20 White E. R. ; Singer S. G. ; Augustyn V. ; Hubbard W. ; Mecklenburg M. ; Dunn B. ; Regan B. ACS Nano 2012, 6 (7), 6308. doi: 10.1021/nn3017469 |
[21] | 21 Frances M. R. Liquid Cell Electron Microscopy New Yorks, USA: Cambridge University Press, 2016, p. 316. |
[22] | 22 Grogan J. M. ; Schneider N. M. ; Ross F. M. ; Bau H. H. Nano Lett. 2014, 14 (1), 359. doi: 10.1021/nl404169a |
[23] | 23 Yu R. ; Hu L. H. ; Cheng Z. Y. ; Li Y. D. ; Ye H. Q. ; Zhu J. Phys. Rev. Lett. 2010, 105, 226101. doi: 10.1103/PhysRevLett.105.226101 |
[24] | 24 Hu L. H. ; Peng Q. ; Li Y. D. J. Am. Chem. Soc. 2008, 130 (48), 16136. doi: 10.1021/ja806400e |
[25] | 25 Wang B. ; Zhu T. ; Wu H. B. ; Xu R. ; Chen J. S. ; Lou X. W. Nanoscale 2012, 4, 2145. doi: 10.1039/c2nr11897a |
[26] | 26 Lu Y. ; Geng J. G. ; Wang K. ; Zhang W. ; Ding W. Q. ; Zhang Z. H. ; Xie S. H. ; Dai H. X. ; Cheng F. R. ; Sui M. L. ACS Nano 2017, 11 (8), 8018. doi: 10.1021/acsnano.7b02656 |
[27] | 29 Marconi U. M. B. ; Puglisi A. ; Rondoni L. ; Vulpiani A. Phys. Rep. 2008, 461, 111. doi: 10.1016/j.physrep.2008.02.002 |
[28] | 1 Xia Y. ; Yang P. ; Sun Y. ; Wu Y. ; Mayers B. ; Gates B. ; Yin Y. ; Kim F. ; Yan H. Adv. Mater. 2003, 15, 353. doi: 10.1002/adma.200390087 |
[29] | 2 He Y. ; Zhang J. ; He G. ; Han X. P. ; Zheng X. R. ; Zhong C. ; Hu W. B. ; Deng Y. Nanoscale 2017, 9, 8623. doi: 10.1039/c7nr02385e |
[30] | 3 Dasgupta N. ; Sun J. W. ; Liu C. ; Brittman S. ; Andrews S. C. ; Lim J. ; Gao H. W. ; Yan R. ; Yang P. Adv. Mater. 2014, 26, 2137. doi: 10.1002/adma.201305929 |
[31] | 6 Liu B. ; Zhang X. B. ; Shioyama H. ; Mukai T. ; Sakai T. ; Xu Q. J. Power. Sources 2010, 857 doi: 10.1016/j.jpowsour.2009.08.058 |
[32] | 30 Paul, R. M. Forces and Interactions between Nanoparticles for Controlled Structures; ProQuest Dissertations Publishing: New Jersey, USA, 2013. |
[33] | 31 Yang J. H. ; Sasaki T. Cryst. Growth Des. 2010, 10 (3), 1233. doi: 10.1021/cg9012284 |