全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 


DOI: 10.3866/PKU.WHXB201604144

Full-Text   Cite this paper   Add to My Lib

Abstract:

近些年来,直接乙醇燃料电池(DEFC)凭借其能量密度高、绿色环保、毒性低等诸多优点受到了广泛关注,相关的机理研究重点关注的是如何高效地催化乙醇C―C键的断裂。本文通过建立电化学在线透射红外方法,对碱性体系下Pb2+对Pt催化乙醇氧化反应(EOR)的影响进行了研究。结果发现,在不同温度、催化剂载量和电势条件下,Pb2+的加入都有利于Pt催化EOR活性的提高,同时能够提高乙醇氧化电流的稳定性。我们利用电化学在线透射红外光谱(ETIRS)方法对Pt催化EOR的反应产物进行了检测,发现Pb2+存在时产物碳酸根的电流效率明显高于Pb2+不存在时的结果,这一结果说明了Pb2+存在下Pt催化EOR中C―C键断裂比例的提高可能是反应活性提高的重要原因。
Direct ethanol fuel cell (DEFC) has received much attention because of its high energy density,environmental friendliness, and low toxicity.Mechanism studies have focused on improving the breaking ratioof the C―C bond during the ethanol oxidation reaction (EOR).We establish an on- line electrochemicaltransmission infrared spectroscopic (ETIRS) method for electrochemical reactions.The new method is appliedto study the effect of the addition of Pb2+ on the EOR catalyzed by Pt in an alkaline solution.We perform a seriesof electrochemical experiments at different temperatures, different catalyst loadings, and different potentials.The addition of Pb2+ is shown to improve the reaction rate of EOR in each experiment.Additionally, the anodiccurrent becomes more stable with Pb2+ addition in the solutions.By using ETIRS, the products of the EOR aredetected.The results show that the current efficiency of the carbonate is obviously higher in the presence ofPb2+ than that without Pb2+.This indicates that Pb2+ may improve the breaking ratio of the C―C bond during theEOR, which results in an increase of the EOR current

References

[1]  14 Colmati F. ; Tremiliosi-Filho G. ; Gonzalez E.R. ; Berná A. ; Herrero E. ; Feliu J.M. Faraday Discuss 2009, 140, 379. doi: 10.1039/B802160K
[2]  17 Xia X.H. ; Liess H.D. ; Iwasita T.J. Electroanal.Chem 1997, 437, 233. doi: 10.1016/S0022-0728(97)00404-X
[3]  18 Chang S.C. ; Leung L.W.H. ; Weaver M.J. J.Phys.Chem 1990, 94, 6013. doi: 10.1021/j100378a072
[4]  22 Léger J.M. J.Appl.Electrochem 2001, 31, 767. doi: 10.1023/A:1017531225171
[5]  26 Santos V.P. ; Del Colle V. ; de Lima R.B. ; Tremiliosi-Filho G. Langmuir 2004, 20, 11064. doi: 10.1021/la040001v
[6]  28 Bergamaski K. ; Gonzalez E.R. ; Nart F.C. Electrochim.Acta 2008, 53, 4396. doi: 10.1016/j.electacta.2008.01.060
[7]  29 de Souza J.P.I. ; Queiroz S.L. ; Bergamaski K. ; Gonzalez E.R. ; Nart F.C. J.Phys.Chem.B 2002, 106, 9825. doi: 10.1021/jp014645c
[8]  30 Sun S. ; Halseid M.C. ; Heinen M. ; Jusys Z. ; Behm R.J. J.Power Sources 2009, 190, 2. doi: 10.1016/j.jpowsour.2009.01.073
[9]  31 He Q. ; Shyam B. ; Macounova K. ; Krtil P. ; Ramaker D. ; Mukerjee S.J. Am.Chem.Soc 2012, 134, 8655. doi: 10.1021/ja301992h
[10]  2 Chu D. ; Wang J. ; Wang S. ; Zha L. ; He J. ; Hou Y. ; Yan Y. ; Lin H. ; Tian Z. Catal.Commun 2009, 10, 955. doi: 10.1016/j.catcom.2008.12.041
[11]  3 Chu D.B. ; Yin X.J. ; Feng D.X. ; Lin H.S. ; Tian Z.W. Acta Phys.-Chim.Sin 2006, 22, 1238. doi: 10.3866/PKU.WHXB20061013
[12]  褚道葆; 尹晓娟; 冯德香; 林华水;田昭武. 物理化学学报, 2006, 22, 1238. doi: 10.3866/PKU.WHXB20061013
[13]  4 Sun H.Y. ; Zhao L.H. ; Yu F.C. Acta Phys.-Chim.Sin 2013, 29, 959. doi: 10.3866/PKU.WHXB201303042
[14]  孙洪岩; 赵莲花; 余凤春. 物理化学学报, 2013, 29, 959. doi: 10.3866/PKU.WHXB201303042
[15]  5 Wang J. ; Wasmus S. ; Savinell R.F. J.Electrochem.Soc 1995, 142, 4218. doi: 10.1149/1.2048487
[16]  6 Lamy C. ; Belgsir E.M. ; Leger J.M. J.Appl.Electrochem 2001, 31, 799. doi: 10.1023/A:1017587310150
[17]  7 Lamy C. ; Lima A. ; LeRhun V. ; Delime F. ; Coutanceau C. ; Léger J.M. J.Power Sources 2002, 105, 283. doi: 10.1016/S0378-7753(01)00954-5
[18]  8 Peled E. ; Duvdevani T. ; Aharon A. ; Melman A. Electrochem.Solid-State Lett 2001, 4 doi: 10.1149/1.1355036
[19]  9 Zhou W. ; Zhou Z. ; Song S. ; Li W. ; Sun G. ; Tsiakaras P. ; Xin Q. Appl.Catal.B-Environ 2003, 46, 273. doi: 10.1016/S0926-3373(03)00218-2
[20]  10 Rightmire R.A. ; Rowland R.L. ; Boos D.L. ; Beals D.L. J.Electrochem.Soc 1964, 111, 242. doi: 10.1149/1.2426092
[21]  11 Lai S.C.S. ; Koper M.T.M. Phys.Chem.Chem.Phys 2009, 11, 10446. doi: 10.1039/B913170A
[22]  12 Gomes J.F. ; Bergamaski K. ; Pinto M.F.S. ; Miranda P.B. J.Catal 2013, 302, 67. doi: 10.1016/j.jcat.2013.02.024
[23]  13 Li H.Q. ; Sun G.Q. ; Cao L. ; Jiang L.H. ; Xin Q. Electrochim.Acta 2007, 52, 6622. doi: 10.1016/j.electacta.2007.04.056
[24]  15 Hitmi H. ; Belgsir E.M. ; Léger J.M. ; Lamy C. ; Lezna R.O. Electrochim.Acta 1994, 39, 407. doi: 10.1016/0013-4686(94)80080-4
[25]  16 Iwasita T. ; Pastor E. Electrochim.Act 1994, 39, 531. doi: 10.1016/0013-4686(94)80097-9
[26]  19 Hable C.T. ; Wrighton M.S. Langmuir 1993, 9, 3284. doi: 10.1021/la00035a085
[27]  20 Fujiwara N. ; Friedrich K.A. ; Stim ming U.J. Electroanal.Chem 1999, 472, 120. doi: 10.1016/S0022-0728(99)00282-X
[28]  21 Neto A.O. ; Giz M.J. ; Perez J. ; Ticianelli E.A. ; Gonzalez E.R. J.Electrochem.Soc 2002, 149, A272. doi: 10.1149/1.1446080
[29]  23 Colmati F. ; Tremiliosi-Filho G. ; Gonzalez E.R. ; Berná A. ; Herrero E. ; Feliu J.M. Phys.Chem.Chem.Phys 2009, 11, 9114. doi: 10.1039/B907250K
[30]  24 de Souza J.P.I. ; Rabelo F.J.B. ; de Moraes I.R. ; Nart F.C. J.Electroanal.Chem 1997, 420, 17. doi: 10.1016/S0022-0728(96)01019-4
[31]  25 Santos V.P. ; Tremiliosi-Filho G.J. Electroanal.Chem 2003, 554, 395. doi: 10.1016/S0022-0728(03)00311-5
[32]  1 Yi B.L. Fuel Cell Beijing: Beijing Chemical Industry Press, 2000.
[33]  27 Pacheco Santos V. ; Del Colle V. ; de Lima R.B. ; Tremiliosi-Filho G. Electrochim.Acta 2007, 52, 2376. doi: 10.1016/j.electacta.2006.08.044
[34]  衣宝廉. 燃料电池, 北京: 北京化学工业出版社, 2000.
[35]  32 Tang Y. ; Wu Y. ; Wang Z.J. Electrochem.Soc 2001, 148, E133. doi: 10.1149/1.1353575

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133