|
- 2018
有穷对数φ级整函数系数线性微分方程解的增长性
|
Abstract:
利用亚纯函数的Nevanlinna理论研究了有穷对数φ级整函数系数线性微分方程解的增长性,得到了解的增长级与系数的对数φ级之间的一些关系.
The growth of solutions of linear differential equations with entire coefficients of finite logarithmic φ order is investigated by using Nevanlinna theory of meromorphic functions, and the relationships between the order of growth of solutions of the equations and the logarithmic φ order of coefficients are obtained
[1] | HAYMAN W K. Meromorphic Functions[M]. Oxford: Qxford Mathematical Monographs Clarendon Press, 1964. |
[2] | 周鉴, 杨丛丽. 一类高阶整函数系数微分方程的复振荡[J]. 贵州师范大学学报(自然科学版), 2016, 34(1): 45-47. |
[3] | BELAíDI B. Growth of Meromorphic Solutions of Finite Logarithmic Order of Linear Difference Equations[J]. Fasciculi Math, 2015, 54(1): 5-20. DOI:10.1515/fascmath-2015-0001 |
[4] | LAINE I. Nevanlinna Theory and Complex Differential Equations[M]. Berlin: W. de. Gruyter, 1993. |
[5] | FRANK G, HELLERSTEIN S. On the Meromorphic Solutions of Non-Homogeneous Linear Differential Equations with Polynomial Coefficients[J]. Proc London Math Soc, 1986, 53: 407-428. |
[6] | CHYZHYKOV I, HEITTOKANGAS J, R?TTY? J. Finiteness of φ-Order of Solutions of Linear Differential Equations in the Unit Disc[J]. J d' Analyse Math, 2009, 109(1): 163-198. DOI:10.1007/s11854-009-0030-3 |
[7] | 龙见仁, 覃智高, 伍廷蜜. 单位圆上解析函数的对数级[J]. 贵州师范大学学报(自然科学版), 2017, 35(6): 77-81. |
[8] | CAO T B, LIU K, WANG J. On the Growth of Solutions of Complex Differential Equation with Entire Coefficients of Finite Logarithmic Order[J]. Math Reports, 2013, 15(2): 249-269. |
[9] | 何育赞, 肖修治. 代数体函数与常微分方程[M]. 北京: 科学出版社, 1988. |
[10] | SHEN X, TU J, XU H Y. Complex Oscillation of a Second-Order Linear Differential Equation with Entire Coefficients of[p, q]-φ Order[J]. Adv Difference Equ, 2014, 2014(1): 1-14. DOI:10.1186/1687-1847-2014-1 |
[11] | 吴渊鸿. [p, q]-φ(r)级整函数在复线性微分方程中的应用[D]. 南昌: 江西师范大学, 2014. |
[12] | PETERCHERN T Y. On Meromorphic Functions with Finite Logarithmic Order[J]. Tran Amer Math Soc, 2005, 358(2): 473-489. |
[13] | GUNDERSEN G. Estimates for the Logarithmic Derivative of a Meromorphic Function, Plus Similar Estimate[J]. J London Math Soc, 1988, 37(2): 88-104. |
[14] | YANG L. Value Distribution Theory[M]. Berlin: Springer-Verlag, 1993. |
[15] | HEITTOKANGAS J, KORHONEN R, R?TTY? J. Generalized Logarithmic Derivative Estimates of Gol'dberg-Grinshtein Type[J]. Bull London Math Soc, 2004, 36(1): 105-114. DOI:10.1112/S0024609303002649 |