|
- 2018
一类反周期函数缺项插值问题的解
|
Abstract:
对一类反周期函数双周期插值问题进行分析,根据插值条件,结合基多项式的分解定理,建立相应的线性方程组,由克莱默法则给出插值问题有解的充分必要条件,并得到该条件下插值解的显式表达式.
The 2-periodic interpolation under antiperiodic trigonometric polynomials is considered. A series of linear equations are established by decomposing the basis polynomials of interpolation, and a sufficient and necessary condition is given based on the Cramer's rule and the explicit expression of the interpolation solution is obtained
[1] | 文晓霞. 一类等距结点上的双周期整插值问题[J]. 西南大学学报(自然科学版), 2012, 34(4): 97-100. |
[2] | RIEMENSCHNEIDER S, SHARMA A, SMITH P W. Convergence of a Lacunary Trigonometric Interpolation on Equidistant Nodes[J]. Acta Math Acad Sci Hungar, 1982, 39(1-3): 27-37. DOI:10.1007/BF01895210 |
[3] | SZABADOS J. On the Rate of Convergence of a Lacunary Trigonometric Interpolation Process[J]. Acta Math Hung, 1986, 47(3-4): 361-370. DOI:10.1007/BF01953973 |
[4] | SHARMEA F, SUN X H. A 2-Periodic Trigonometric Interpolation Problem[J]. Approx Theory & Its Appl, 1992, 8(4): 1-16. |
[5] | FRANZ J D, LUDGER K. Lacunary Interpolation by Antiperiodic Trigonometric Polynomials[J]. BIT, 1999, 39(3): 439-450. DOI:10.1023/A:1022314518264 |
[6] | 文晓霞, 侯象乾. 一类反周期函数的插值问题[J]. 宁夏大学学报(自然科学版), 2004, 25(4): 293-296. |
[7] | 文晓霞. 一类反周期函数的双周期插值问题[J]. 宁夏大学学报(自然科学版), 2011, 32(1): 15-17. |
[8] | 文晓霞. 一类反周期函数的双周期缺项插值问题[J]. 江西师范大学学报(自然科学版), 2014, 38(1): 62-64. |