全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于ICA阈值优化耦合信息熵的边缘提取算法
An Edge Extraction Algorithm Based on ICA Threshold Optimization and Information Entropy

DOI: 10.13718/j.cnki.xdzk.2018.09.021

Keywords: 边缘提取, 帝国主义竞争算法, 分段阈值, 信息熵, 灰度分布模式, 均匀区域
edge extraction
, imperialist competitive algorithm, segmentation threshold, information entropy, gray-level distribution model, uniform region

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了解决传统边缘提取算法对噪声敏感和阈值难以选取,边缘清晰度不高以及边缘不平滑等问题,提出了一种基于ICA阈值优化耦合信息熵的边缘提取算法.首先,基于灰度分布模式将图像分成若干子块,并计算每个子块的分段阈值;然后,为了从大量的分段阈值选择合适的阈值,引入了帝国主义竞争(imperialist competitive algorithm,ICA)优化算法,计算图像的最优阈值,根据获得的最优阈值将每个图像子块划分为不同的均匀区域;最后,通过计算每个均匀区域的信息熵,利用信息熵检测所有处于不同均匀区域的边界像素来提取边缘.实验结果表明:与当前常用的边缘提取算法比较,本文算法具有更高的品质因数与边缘连续性,能够抑制过于微小和琐碎的细节,突出有效的边缘信息,边缘定位精度高且平滑连贯,能够准确地提取目标轮廓.
The traditional edge detection algorithm is characterized by noise sensitivity, difficult threshold selection, low edge sharpness, unsmooth edge and others. In order to solve such problems an edge detection algorithm based on ICA threshold and information entropy is proposed in this paper. Firstly, the image is divided into several sub-blocks based on the gray level distribution, and the segmentation threshold of each sub-block is calculated. Next, in order to select the appropriate threshold from a large number of segmented thresholds, the imperialist competitive optimization algorithm is introduced to calculate the optimal threshold value of the image. Then, each image sub-block is divided into different uniform regions according to the optimal threshold obtained. Finally, the information entropy of each region is calculated, and the edge pixels of all the regions in different uniform regions are detected, using the information entropy. Experimental results show that compared with the commonly used edge detection algorithms, the algorithm described herein has a higher quality factor and edge continuity, is able to suppress the too small and trivial details and highlight the effective edge information. The edge has good positioning accuracy and is smooth and coherent. Therefore, the new algorithm can accurately extract the contour of the target

References

[1]  KIANI A, SAHEBI M R. Edge Detection Based on the Shannon Entropy by Piecewise Thresholding on Remote Sensing Images[J]. Computer Vision LET, 2015, 9(5): 758-768. DOI:10.1049/iet-cvi.2013.0192
[2]  吴泽鹏, 郭玲玲, 朱明超, 等. 结合图像信息熵和特征点的图像配准方法[J]. 红外与激光工程, 2013, 42(10): 2846-2852. DOI:10.3969/j.issn.1007-2276.2013.10.046
[3]  赵振兵, 金思新, 刘亚春. 基于NSCT的航拍绝缘子图像边缘提取方法[J]. 仪器仪表学报, 2012, 33(9): 2045-2052. DOI:10.3969/j.issn.0254-3087.2012.09.018
[4]  李俊山, 马颖, 赵方舟. 改进的Canny图像边缘检测算法[J]. 光子学报, 2011, 40(1): 50-54.
[5]  ATASHPAZ-GARGARI E, LUCAS C. Imperialist Competitive Algorithm: an Algorithm for Optimization Inspired by Imperialistic Competition[C]. IEEE Congress on Evolutionary Computation, CEC 2007. New York: IEEE Press, 2007: 4661-4667.
[6]  WU H, MIAO Z, WANG Y, et al. Image Completion with Multi-Image Based on Entropy Reduction[J]. Neurocomputing, 2015, 159(12): 157-171.
[7]  张健, 何坤, 郑秀清, 等. 基于蚁群优化的图像边缘检测算法[J]. 计算机工程, 2011, 37(17): 191-193. DOI:10.3969/j.issn.1000-3428.2011.17.064
[8]  SHIH M Y, TSENG D C. Wavelet-Based Multiresolution Edge Detection and Tracking[J]. Image and Vision Computing, 2015, 23(4): 441-451.
[9]  王坷, 肖鹏峰, 冯学智, 等. 基于改进一维离散希尔伯特变换的图像边缘检测方法[J]. 测绘学报, 2012, 41(3): 421-427.
[10]  BISWAS R, SIL J. An Improved Canny Edge Detection Algorithm Based on Type-2 Fuzzy Sets[J]. Procedia Technol, 2012, 14(4): 820-824.
[11]  SMITH S M, BRADY J M. SUSAN-A New Approach to Low Level Image Processing[J]. International Journal of Computer Vision, 2014, 23(1): 45-78.
[12]  张志龙, 杨卫平, 李吉成. 一种基于蚁群优化的显著边缘检测算法[J]. 电子与信息学报, 2014, 36(9): 2061-2067.
[13]  王晓光, 赵春燕, 李群. 基于帝国主义竞争算法的WSNs定位方案[J]. 传感器与微系统, 2014, 33(1): 42-46. DOI:10.3969/j.issn.1000-9787.2014.01.011

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133