全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

有限交换环上的多项式置换群
Groups of Polynomial Permutations over Finite Commutative Rings

Keywords: Witt多项式,置换多项式,半直积,圈积
Witt polynomials
, permutation polynomials, semi-direct product, wreath product

Full-Text   Cite this paper   Add to My Lib

Abstract:

Sophie Frisch描述了$\mathbb{Z}/p^2\mathbb{Z}$上多项式置换群的结构。 张起帆找到$\mathbb{Z}/p^2\mathbb{Z}$上多项式函数与$\mathbb{Z}/p\mathbb{Z}$上多项式函数的3维向量之间的对应关系。 本文先证明在任意有限交换环$R$上,多项式置换群同构于多项式函数形成的$R$-代数的自同构群。 然后我们用张起帆的对应对Sophie Frisch描述给出一个新的证明。
Sophie Frisch characterized the structure of the group of polynomial permutations over $\mathbb{Z}/p^2\mathbb{Z}$. Qifan Zhang found a correspondence between polynomial functions over $\mathbb{Z}/p^2\mathbb{Z}$ and 3-tuples of polynomial functions over $\mathbb{Z}/p\mathbb{Z}$, this paper is giving another proof of [1]. In this paper, we first prove that over any finite commutative ring $R$, the group of polynomial permutations is isomorphic to the automorphism group of the $R$-algebra of the polynomial functions. Then we give an easy proof to the characterization of Sophie Frisch using the correspondence set found by Zhang

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133