|
- 2018
CT纹理分析在腮腺多形性腺瘤与腺淋巴瘤鉴别诊断中的价值
|
Abstract:
摘要 目的: 探讨CT纹理分析在鉴别腮腺多形性腺瘤与腺淋巴瘤中的诊断价值。方法: 回顾性分析通过手术病理证实的32例腮腺多形性腺瘤与28例腮腺腺淋巴瘤的CT增强图像,并对其动脉期图像进行纹理分析,分别测得其平均值、标准差、熵值、偏度、峰度及异质性等相关参数。最后,利用多参数联合鉴别腮腺多形性腺瘤与腺淋巴瘤。结果: 本研究中对腮腺多形性腺瘤与腺淋巴瘤进行纹理分析,得到各参数进行比较,可得:平均值及异质性参数在腮腺多形性腺瘤及腺淋巴瘤两组肿瘤中有较明显的统计学差异。此外,本研究对平均值、标准差、熵值等定量参数进行了多参数联合分析,对两种肿瘤的鉴别较单个参数有更明显的统计学差异。结论: CT纹理分析中平均值及异质性等参数可用于鉴别腮腺多形性腺瘤与腺淋巴瘤
[1] | Tourassi GD. Journey toward computer-aided diagnosis: role of image texture analysis [J]. Radiology, 1999, 213(2)∶317-320 |
[2] | Karz P, Hartl DM, Guerre A. Clinical Ultrasound of the salivary glands [J]. Otolaryngol Clin N Am, 2009, 42(6)∶973-1000 |
[3] | Sriskandan N,Hannah A,Howlett DC. A study to evaluate the accuracy of ultrasound in the diagnosis of parotid lumps and to review the sonographic features of parotid lesions-results in 220 patients [J]. Clin Radiol, 2010, 65(5)∶366-372 |
[4] | 董鑫哲,邢立刚,于金明.肿瘤异质性的医学影像学分析及临床应用[J].中华肿瘤杂志,2013,35(2)∶81-84 |
[5] | 石鹏,王华,李星云,等.彩色多普勒超声对腮腺良恶性肿瘤的鉴别诊断价值[J].中国乡村医药杂志,2013,20(17)∶58-59 |
[6] | 薛鹏,史大鹏,张伟,等.CT灌注成像及增强扫描在腮腺多形性腺瘤与腺淋巴瘤鉴别诊断中的价值[J].实用放射学杂志,2012,28(9)∶1334-1337 |
[7] | Dong Y, Wu JL, Tian M, et al. Value of MSCT in diagnosis of parotid benign tumor: analysis of 84 cases [J]. Clin Med Imaging Technol, 2007, 23 (10)∶1469-1472 |
[8] | 董想,张昊,曾宪涛,等.腮腺肿瘤切除术后并发症对患者生活质量的影响[J].口腔医学研究,2015,31(1)∶92- 93 |
[9] | Sristi Singh,刘珍银. 腮腺良、恶性肿瘤的CT与MRI诊断[J].临床医学工程, 2014,21(8)∶960-961 |
[10] | Oeppen RS,Gibson D,Brennan PA.An update on the use of ultrasound imaging in oral and maxillofacial surgery [J]. Br J Oral Maxillofac Surg,2010,48(6)∶412-418 |
[11] | 程玉书,周正荣,彭卫军.腮腺原发良、恶性肿瘤CT表现的比较分析[J].中国癌症杂志,2007,17(10)∶807-812 |
[12] | 余韵,颜雨春.多层螺旋CT在鉴别腮腺良恶性肿瘤中的应用[J].安徽医科大学学报,2014,49(3)∶374-377 |
[13] | 黄冠兰,徐秋华,燕山.腮腺多形性腺瘤与腺淋巴瘤的超声鉴别研究[J].中华超声影像学杂志,2013, 22(4)∶366-367 |
[14] | Yerli H, Aydin E, Coskun M, et al. Dynamic multislice computed tomography findings for parotid gland tumors [J]. J Comput Assist Tomogr, 2007, 31(2)∶309-316 |
[15] | Kim HS, Jahng GH, Ryu CW, et al. Added value and diagnostic performance of intratumoral susceptibility signals in the differential diagnosis of solitary enhancing brain lesions: preliminary study [J]. AJNR Am J Neuroradiol,2009,30(8)∶1574-1579 |
[16] | Juntu J, Sijbers J, De Backer S, et al. Machine learning study of several classifiers trained with texture analysis features to differentiate benign from malignant soft-tissue tumors in T1-MRI images [J]. J Magn Reson Imaging,2010,31(3)∶680-689 |
[17] | Hodgdon T, Mcinnes MD, Schieda N, et al. Can quantitative CT texture analysis be used to differentiate fat-poor renal angiomyolipoma from renal cell carcinoma on unenhanced CT images [J]. Radiology,2015, 276(3)∶787-796 |