|
- 2018
RNA-Seq分析小鼠腭发育关键时期基因的时空表达
|
Abstract:
摘要 目的: 构建小鼠腭发育时期差异表达基因库(differentially expressed genes bank,DEGB),探究腭发育关键调控因子和调控机制。方法: 分别收集C57BL/6孕鼠妊娠13.5、14.5、15.5、16.5 d(embryonic day,Ed)胚胎腭板,RNA测序技术筛查差异表达基因(differentially expressed genes,DEGs),选择部分基因进行功能注释,定量聚合酶链反应( quantitative polymerase chain reaction,qPCR )验证和免疫组织化学染色。结果: 腭发育第一阶段(Ed13.5~Ed14.5)筛出243个DEGs(27个下调,216个上调);第二阶段(Ed14.5~Ed15.5)筛出208个DEGs(30个下调,178个上调);第三阶段(Ed15.5~Ed16.5)筛出262个DEGs(31个下调,231个上调)。其中微小RNA(micro RNA,miRNA)和晶体蛋白家族多个成员表达变化显著。免疫组织化学结果显示Ed13.5~Ed16.5腭间充质中分泌型磷酸蛋白1(secreted phosphoprotein,Spp1)表达量逐渐升高。结论: miRNA家族、晶体蛋白家族成员以及Spp1基因在腭形成时期可能发挥关键作
[1] | Schoen C, Glennon JC, Abghari S, et al. Differential micro RNA expression in cultured palatal fibroblasts from infants with cleft palate and controls [J]. Eur J Orthod, 2018, 40(1)∶90-96 |
[2] | Shin JO, Lee JM, Cho KW, et al. MiR-200b is involved in Tgf-β signaling to regulate mammalian palate development [J]. Histochem Cell Biol, 2012, 137(1)∶67-78 |
[3] | Foster BL, Ao M, Salmon CR, et al. Osteopontin regulates dentin and alveolar bone development and mineralization [J]. Bone, 2018,107∶196-207 |
[4] | 陈尔军,陈仁吉,穆玥,等.叶酸代谢相关基因与非综合征性唇腭裂的关系[J].口腔医学研究,2011,27(3)∶209-213 |
[5] | Jakobsen LP, Borup R, Vestergaard J, et al. Expression analyses of human cleft palate tissue suggest a role for osteopontin and immune related factors in palatal development [J]. Exp Mol Med, 2009, 41(2)∶77-85 |
[6] | Zimmerman EF, Wee EL. Role of neurotransmitters in palate development [J]. Curr Top Dev Biol, 1984, 19∶37-63 |
[7] | Parada C, Han D, Grimaldi A, et al. Disruption of the ERK/MAPK pathway in neural crest cells as a potential cause of Pierre Robin sequence [J]. Development, 2015, 142(21)∶3734-3745 |
[8] | Schoen C, Aschrafi A, Thonissen M, et al. MicroRNAs in palatogenesis and cleft palate [J]. Front Physiol, 2017, 8∶165 |
[9] | Tini M, Otulakowski G, Breitman ML, et al. An everted repeat mediates retinoic acid induction of the gamma F-crystallin gene: evidence of a direct role for retinoids in lens development [J]. Genes Dev, 1993, 7(2)∶295-307 |
[10] | Mossey PA, Little J, Munger RG, et al. Cleft lip and palate [J]. Lancet, 2009, 374(9703)∶1773-1785 |
[11] | Wistow G. The human crystallin gene families [J]. Hum Genomics, 2012, 6∶26 |
[12] | Rittling SR, Matsumoto HN, McKee MD, et al. Mice lacking osteopontin show normal development and bone structure but display altered osteoclast formation <i>in vitro</i> [J]. J Bone Miner Res, 1998, 13(7)∶1101-1111 |
[13] | Gritli-Linde A. Molecular control of secondary palate development [J]. Dev Biol, 2007, 301(2)∶309-326 |
[14] | Lan Y, Xu J, Jiang R. Cellular and molecular mechanisms of palatogenesis [J]. Curr Top Dev Biol, 2015, 115∶59-84 |
[15] | Li C, Lan Y, Jiang R. Molecular and cellular mechanisms of palate development [J]. J Dent Res, 2017, 96(11)∶1184-1191 |
[16] | Chiquet M, Blumer S, Angelini M, et al. Mesenchymal remodeling during palatal shelf elevation revealed by extracellular matrix and F-actin expression patterns [J]. Front Physiol, 2016, 7∶392 |
[17] | Shin JO, Nakagawa E, Kim EJ, et al. miR-200b regulates cell migration via Zeb family during mouse palate development [J]. Histochem Cell Biol, 2012, 137(4)∶459-470 |