全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

无约束优化问题的一个下降方法
A DESCENT METHOD FOR UNCONSTRAINED OPTIMIZATION PROBLEMS

Keywords: 无约束优化 记忆梯度法 曲线搜索 收敛性
unconstrained optimization memory gradient method curve search convergence

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究了无约束优化问题.利用当前和前面迭代点的信息以及曲线搜索技巧产生新的迭代点,得到了一个新的求解无约束优化问题的下降方法.在较弱条件下证明了算法具有全局收敛性.当目标函数为一致凸函数时,证明了算法具有线性收敛速率.初步的数值试验表明算法是有效的.
This paper studies the unconstrained optimization problem. By using the current and previous iterative information and the curve search rule to generate a new iterative point, a new descent algorithm is proposed for solving the unconstrained optimization problem. We prove its global convergence under some mild conditions. The linear convergence rate is also proved when the objective function is uniformly convex. Numerical results show that the new method is efficient in practical computation

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133