全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

冲积河流分级恒定水沙数学模型的适用性研究 Applicability of a quasi-steady flow model for alluvial rivers

Keywords: 数学模型,分级恒定流模型,非恒定流模型,水沙运动过程

Full-Text   Cite this paper   Add to My Lib

Abstract:

天然河流的来流过程往往是非恒定的,特别是在洪水季节.在工程实践中为了简化计算,通常将非恒定来流过程概化为梯级形式的恒定流求解,相应的模型被称为分级恒定流模型.然而,分级恒定流模型与非恒定流模型之间的差异并不十分清楚.通过概化的长江中游长河段的数值算例来研究比较两种模型之间的差异,采用有限体积法中的SLC数值格式来求解非恒定流模型中的控制方程组,对于分级恒定流模型中的常微分方程组则采用有限差分法求解.研究结果表明,随着计算历时的增加,两种模型计算结果之间的差异逐渐变大.在模拟50年的冲淤变化时,分级恒定流模型与非恒定流模型计算总河段的冲淤量的相对差异为2.1%.随着河段距离的增加,两种模型计算河段的冲淤量相差越来越大.一般来说,分级恒定流模型可适用于短历时、短河段的情形;对于长历时、长河段水沙运动过程的模拟,推荐使用非恒定流模型

References

[1]  Wu W,Wang S S Y.One-dimensional modeling of dam-break flow over movable beds[J].Journal of Hydraulic Engineering,2007,133(1):48-58.
[2]  Toro E F.Shock-capturing Methods for Free-surface Shallow Flows[M].Chichester:John Wiley&Sons,2001:199-212.
[3]  张瑞瑾.河流泥沙动力学[M].北京:中国水利水电出版社,1998:46-50.Zhang Ruijin.River Sediment Dynamics[M].Beijing:China Water&Power Press,1998:46-50.
[4]  Guo J.Logarithmic matching and its applications in computational hydraulics and sediment transport[J].Journal of Hydraulic Research,2002,40(5):555-565.
[5]  葛华.水库下游非均匀沙输移及模拟技术初步研究[D].武汉:武汉大学,2010:67-75.Ge Hua.Preliminary study of non-uniform sediment transport and simulation technologies downstream reservoir[D].Wuhan:Wuhan University,2010:67-75.
[6]  Huang W,Zhou J,Cao Z,et al.Coupled modelling of flood due to natural landslide dam breach[J].Water Management,2012,165(10):525-542.
[7]  吴伟明,胡春燕.平面二维水沙数学模型[J].水利学报,1995,(10):40-46.Wu Weiming,Hu Chunyan.A two-dimensional flow and sediment mathematical model[J].Journal of Hydraulic Engineering,1995,(10):40-46.
[8]  谢鉴衡.河流模拟[M].北京:水利电力出版社,1990:1-6.Xie Jianheng.Modelling of River[M].Beijing:Water Resources and Electric Power Press,1990:1-6.
[9]  王光谦.河流泥沙研究进展[J].泥沙研究,2007,(2):64-80.Wang Guangqian.Advances in river sediment research[J].Journal of Sediment Research,2007,(2):64-80.
[10]  谢鉴衡,魏良琰.河流泥沙数学模型的回顾与展望[J].泥沙研究,1987,(3):3-15.Xie Jianheng,Wei Liangyan.Review and prospect of mathematical models for river sedimentation[J].Journal of Sediment Research,1987,(3):3-15.
[11]  李义天.河道平面二维泥沙数学模型研究[J].水利学报,1989,(2):26-35.Li Yitian.A study on two-dimensional mathematical modelling of river sediment transport[J].Journal of Hydraulic Engineering,1989,(2):26-35.
[12]  Wu W.Computational River Dynamics[M].London:Taylor&Francis,2007.
[13]  Capart H,Young D L.Formation of a jump by the dam-break wave over a granular bed[J].Journal of Fluid Mechanics,1998,372:165-187.
[14]  Cao Z,Pender G,Wallis S,et al.Computational dambreak hydraulics over erodible sediment bed[J].Journal of Hydraulic Engineering,2004,130(7):689-703.
[15]  Huang W,Cao Z,Carling P,et al.Coupled 2Dhydrodynamic and sediment transport modeling of megaflood due to glacier dam-break in Altai Mountains,Southern Siberia[J].Journal of Mountain Science,2014,11(6):1442-1453.
[16]  Krishnappan B G.Comparison of MOBED and HEC-6river flow models[J].Canadian Journal of Civil Engineering,2011,12(3):464-471.
[17]  李义天,尚全民.一维不恒定流泥沙数学模型研究[J].泥沙研究,1998,(1):81-87.Li Yitian,Shang Quanmin.Modeling of sediment transport in unsteady flow[J].Journal of Sediment Research,1998,(1):81-87.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133