全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

面向微博图文关系识别的统一特征空间映射方法 Unified Feature Space Mapping Approach to Correlation Recognition Between Image and Text in Weibo

Keywords: 图文关系,统一特征空间,支持向量机,特征映射

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对图文微博中图像、文本和社交数据的异构性,在提取图像、文本和社交等多模态特征的基础上,本文提出了面向微博图文关系识别的统一特征空间映射方法.该方法首先选择图像特征空间为统一特征空间,然后基于遗传算法求解映射矩阵,将文本特征和社交特征映射至统一特征空间,最后利用支持向量机在统一特征空间中建立图文关系识别模型.采用统一特征空间映射方法前后的对比实验结果表明,在总正确率上,面向微博图文关系识别的统一特征空间映射方法是有效的

References

[1]  段喜萍,刘家锋,王建华,等.一种语义级文本协同图像识别方法[J].哈尔滨工业大学学报,2014,46(3):49-53.DUAN X P,LIU J F,WANG J H,et al.A collaborative image recognition method based on semantic level of text[J].Journal of Harbin Institute of Technology,2014,46(3):49-53(Ch).
[2]  TRAN K,HE X,ZHANG L,et al.Rich Image Captioning in the Wild[DB/OL].[2017-01-03].http://www.cv-foundation.org/openaccess/content_cvpr_2016_workshops/w12/papers/Tran_Rich_Image_Captioning_CVPR_2016_paper.pdf.DOI:10.1109/CVPRW.2016.61.
[3]  XU J,MEI T,YAO T,et al.MSR-VTT:A Large Video Description Dataset for Bridging Video and Language[DB/OL].[2017-01-03].http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Xu_MSR-VTT_A_Large_CVPR_2016_paper.pdf.DOI:10.1109/CVPR.2016.571.
[4]  OSKOUIE P,ALIPOUR S,AMIR-MASOUD E M.Multimodal feature extraction and fusion for semantic mining of soccer video:A survey[J].Journal of Artificial Intelligence Review,2014,42(2):173-210.
[5]  SUK H I,LEE S W,SHEN D,et al.Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis[J].NeuroImage,2014,101:569-582.DOI:10.1016/j.neuroimage.2014.06.077.
[6]  WANG Z,GUO J.Story similarity detection in broadcast domain based on multimodal feature fusion[J].American Journal of Engineering and Technology Research,2015,15(1):176.
[7]  刘知远,张乐,涂存超,等.中文社交媒体谣言统计语义分析[J].中国科学:信息科学,2015,45(12):1536.DOI:10.1360/N112015-00243.LIU Z Y,ZHANG L,TU C C,et al.Statistical and semantic analysis of rumors in Chinese social media[J].Scientia Sinica Informationis,2015,45(12):1536.DOI:10.1360/N112015-00243(Ch).
[8]  杜友田,李谦,周亚东,等.基于异质信息融合的网络图像半监督学习方法[J].自动化学报,2012,38(12):1923-1932.DOI:10.3724/SP.J.1004.2012.01923.DU Y T,LI Q,ZHOU Y D,et al.Web image semisupervised learning method based on heterogeneous information fusion[J].Acta Automatica Sinica,2012,38(12):1923-1932.DOI:10.3724/SP.J.1004.2012.01923(Ch).
[9]  PAN Y W,MEI T,YAO T,et al.Jointly modeling embedding and translation to bridge video and language[DB/OL].[2017-01-03].http://home.ustc.edu.cm/~panywei/paper/CVPR16-Yingwei.pdf.DOI:10.1109/CVPR.2016.497.
[10]  BU S H,CHENG S G,LIU Z B,et al.Multimodal feature fusion for 3D shape recognition and retrieval[J].IEEE Multimedia,2014,21(4):38-46.DOI:10.1109/MMUL.2014.52.
[11]  NATARAJAN P,WU S,VITALADEVUNI S,et al.Multimodal feature fusion for robust event detection in web videos[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington,D C:IEEE,2012:1298-1305.DOI:10.1109/CVPR.2012.6247814.
[12]  CHANG C C,LIN C J.LIBSVM:A library for support vector machines[J].ACM Transactions on Intelligent Systems and Technology,2011,2(3):27.DOI:10.1145/1961189.1961199.
[13]  丁兆云,贾焰,周斌,等.微博数据挖掘研究综述[J].计算机研究与发展,2014,51(4):691-706.DOI:10.7544/issn1000-1239.2014.20130079.DING Z Y,JIA Y,ZHOU B,et al.Survey of data mining for microblogs[J].Journal of Computer Research and Development,2014,51(4):691-706.DOI:10.7544/issn1000-1239.2014.20130079(Ch).
[14]  LI M,XUE X B,ZHOU Z H.Exploiting multi-modal interactions:A unified framework[C]//Proceedings of 21st International Joint Conference on Artificial Intelligence.San Francisco:Morgan Kaufmann Publishers Inc,2009:1120-1125.
[15]  GAO Y,WANG M,ZHA Z J,et al.Visual-textual joint relevance learning for tag-based social image search[J].IEEE Transactions on Image Processing,2013,22(1):363-376.DOI:10.1109/TIP.2012.2202676.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133