全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

顾及多因素影响的自适应反距离加权插值方法
An Adaptive Inverse-Distance Weighting Spatial Interpolation Method with the Consideration of Multiple Factors

DOI: 10.13203/j.whugis20140658

Keywords: 反距离加权插值,距离衰减参数,自适应,多因素,
inverse-distance weighting
,distance-decay parameter,adaptation,multiple factors

Full-Text   Cite this paper   Add to My Lib

Abstract:

空间插值算法旨在利用离散的观测点测量数据估算同一区域中未采样点的估计值,进而生成连续的空间表面模型。为了获得高精度的缺失数据估计值和高分辨率空间表面模型,提出了一种顾及多因素影响的自适应反距离加权插值算法(adaptive cluster gradient inverse-distance weighting, ACGIDW)。该算法以气象数据为例,顾及复杂地形因素、经纬度和高程对空间插值的影响,并根据采样点的空间分布模式对反距离加权算法中的距离衰减参数α进行自适应调整,提高了空间插值算法的精度和自适应性。采用两组实际气温和降水数据,运用交叉验证模型,对ACGIDW方法、其他反距离加权方法、普通克立金方法进行实验对比分析,验证了ACGIDW方法的优越性和可行性

References

[1]  Chen F W, Liu C W. Estimation of the Spatial Rainfall Distribution Using Inverse Distance Weighting (IDW) in the Middle of Taiwan[J]. <em>Paddy and Water Environment</em>, 2012, 10(3):209-222
[2]  Lu G Y, Wong D W. An Adaptive Inverse-Distance Weighting Spatial Interpolation Technique[J]. <em>Computers & Geosciences</em>, 2008, 34(9):1044-1055
[3]  Li Jin, Heap A D. A Review of Comparative Studies of Spatial Interpolation Methods in Environmental Sciences:Performance and Impact Factors[J]. <em>Ecological Informatics</em>, 2011, 6:228-241
[4]  Chu Shaoling, Zhou Zhaoye, Yuan Lei, et al. Study on Spatial Precipitation Interpolation Methods:A Case of Gansu Province[J]. <em>Pratacultural Science</em>, 2008, 25(6):19-23(储少林,周兆叶,袁雷,等.降水空间插值方法应用研究:以甘肃省为例[J].草业科学,2008,25(6):19-23)
[5]  Nalder I A, Wein R W. Spatial Interpolation of Climatic Normals:Test of a New Method in the Canadian Boreal Forest[J]. <em>Agricultural and Forest Meteorology</em>, 1998, 92(4):211-225
[6]  Feng Zhiming, Yang Yanzhao, Ding Xiaoqiang, et al. Optimization of the Spatial Interpolation Methods for Climate Resource[J].<em>Geographical Research</em>, 2004, 23(3):357-364(封志明,杨艳昭,丁晓强,等.气象要素空间插值方法优化[J].地理研究,2004,23(3):357-364)
[7]  Li Guangqiang, Deng Min, Cheng Tao, et al. A Dual Distance based Spatial Clustering Method[J]. <em>Acta Geodaetica et Cartographica Sinica, </em>2008, 37(4):482-488(李光强,邓敏,程涛,等.一种基于双重距离的空间聚类方法[J]. 测绘学报,2008,37(4):482-488)
[8]  Clark P J, Evans F C. Distance to Nearest Neighbor as a Measure of Spatial Relationships in Populations[J]. <em>Ecology</em>, 1954,35(4):445-453
[9]  Shiode N, Shiode S. Street-Level Spatial Interpolation Using Network-based IDW and Ordinary Kriging[J]. <em>Transactions in GIS</em>, 2011, 15(4):457-477
[10]  Xu Chengdong, Wang Jinfeng, Hu Maogui, et al. Interpolation of Missing Temperature Data at Meteorological Stations Using P-BSHADE[J]. <em>Climate</em>, 2013, 26:7452-7463
[11]  Simolo C, Brunetti M, Maugeri M, et al. Improving Estimation of Missing Values in Daily Precipitation Series by a Probability Density Function-Preserving Approach[J]. <em>International Journal of Climatology</em>, 2010, 30:1564-1576
[12]  Liu Zhihong, Yang Qingke, Li Rui, et al. Interpolation for Time Series of Meterorological Variables Using ANUSPLIN[J]. <em>Journal of Northwest A&F University</em>, 2008, 36(10):227-234(刘志红,杨勤科,李锐,等.基于ANUSPLIN的时间序列气象要素空间插值[J].西北农林科技大学学报·自然科学版,2008,36(10):227-234)
[13]  Yi Ling, Yuan Linwang, Luo Wen, et al. V-Neighbor Structure based Spatial Interpolation Algorithm[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2012, 37(11):1285-1288(易琳,袁林旺,罗文,等.顾及V-邻域结构的局部保形插值算法[J].武汉大学学报·信息科学版,2012,37(11):1285-1288)
[14]  Li Sha, Shu Hong, Xu Zhengquan. Interpolation of Temperature Based on Spatial-Temporal Kriging[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2012, 37(2):237-241(李莎,舒红,徐正全.利用时空Kriging进行气温插值研究[J].武汉大学学报·信息科学版,2012,37(2):237-241)
[15]  Zhang Jinming, You Xiong, Wan Gang. Effects of Interpolation Parameters in Multi-log Radial Basis Function on DEM Accuracy[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2013, 38(5):608-612(张锦明,游雄,万刚.径向基函数算法中插值参数对DEM精度的影响[J].武汉大学学报·信息科学版,2013,38(5):608-612)
[16]  Dong Jian, Peng Rencan, Zheng Yidong. An Improved Algorithm of Point-by-Point Interpolation by Using Local Dynamic Optimal Delaunay Triangulation Network[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2013, 38(5):613-617(董箭,彭认灿,郑义东.利用局部动态最优Delaunay三角网改进逐点内插算法[J]. 武汉大学学报·信息科学版,2013,38(5):613-617)
[17]  Chen Chuanfa, Yue Tianxiang, Zhang Zhaojie. An Algorithm for Solving High Accuracy Surface Modeling[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2010, 35(3):365-368(陈传法,岳天祥,张照杰.高精度曲面模型的解算[J].武汉大学学报·信息科学版,2010,35(3):365-368)
[18]  Peng Siling. Developments of Spatio-Temporal Interpolation Methods for Meteorological Elements[D]. Changsha:Central South University, 2010(彭思岭.气象要素时空插值方法研究[D].长沙:中南大学,2010)
[19]  Li Jin, Heap A D. Spatial Interpolation Methods Applied in the Environmental Sciences:A Review[J]. <em>Environmental Modelling & Software</em>, 2014, 53:173-189
[20]  Efron B, Gong G. A Leisurely Look at the Bootstrap, the Jackknife, and Cross-Validation[J]. <em>The American Statistician</em>, 1983, 37(1):36-48
[21]  De Smith M J, Goodchild M F, Longley P. Geospatial Analysis:A Comprehensive Guide to Principles, Techniques and Software Tools[M]. Matador:Troubador Publishing Ltd, 2007
[22]  Deng M, Liu Q, Cheng T, et al. An Adaptive Spatial Clustering Algorithm Based on Delaunay Triangulation[J]. <em>Computers, Environment and Urban Systems</em>, 2011, 35(4):320-332
[23]  Kantardzic M. Data Mining:Concepts, Models, Methods, and Algorithms[M]. Blackwell:John Wiley & Sons, 2011

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133