|
- 2016
基于GNSS观测网络的断层滑移时空反演
|
Abstract:
利用GNSS网络位移时空序列,基于弹性位错理论,构建了断层滑移时空分布的动态卡尔曼滤波反演模型。考虑断层面的非均匀滑动,将断层面细分为多个子断层,获取了较精细的滑移空间分布,并顾及了先验信息和拉普拉斯平滑约束。鉴于断层滑移引起的地表形变具有高空间相关性的特点,利用整个GNSS观测网络数据一起参与反演,有效分离了空间不相关的噪声。实验结果表明,当断层形变位移量和噪声水平相当,且点位分布间隔沿走向和倾向至少与子断层长宽等同时,均能反演得到正确的断层滑移时空分布。若信噪比不变,测站分布密度继续增大时,对反演效果提高并不显著,但能够容忍较低信噪比的观测数据
[1] | Chen Guangqi, Wu Yanqiang, Jiang Zaisen, et al. Characteristics of Seismogenic Model of Mw 9.0 Earthquake in Tohoku, Japan Reflected by GPS Data[J]. Chinese J Geophys, 2013, 56(3):848-856(陈光齐,武艳强,江在森,等.GPS资料反映的日本东北Mw 9.0地震的孕震特征[J].地球物理学报, 2013, 56(3):848-856) |
[2] | Xu Keke, Wu Jicang. Detecting Transient Aseismic Slip Using GNSS Spatio-Temporal Data[J]. Chinese J Geophys, 2015, 40(7):2330-2338(徐克科,伍吉仓.基于GNSS时空数据的瞬态无震蠕滑信息检测[J].地球物理学报, 2015, 40(7):2330-2338) |
[3] | Okada Y. Surface Deformation Due to Shear and Tensile Faults in a Half-Space[J]. Bulletin of the Seismological Society of America, 198575(N4):1135-1154 |
[4] | Dong D, Fang P, Bock Y, et al. Spatio-Temporal Filtering Using Principal Component Analysis and Karhunen-loeve Expansion Approaches for Regional GPS Network Analysis[J]. Journal of Geophysical Research:Solid Earth, 2006, 111(B3):1581-1600 |
[5] | Wang Wuxing, Ma Li, Chen Qifu, et al. Extended Network Inversion Filter and Experimental Study on the Xianshuihe Fault Zone[J]. Journal of Seismological Research, 2008(1):58-63(王武星,马丽,陈棋福,等.扩展网络反演滤波方法及其在鲜水河断裂带上的初步实验[J].地震研究, 2008(1):58-63) |
[6] | Kositsky A P, Avouac J P. Inverting Geodetic Time Series with a Principal Component Analysis-based Inversion Method[J]. Journal of Geophysical Research:Solid Earth, 2010, 115(B03401), DOI:10.1029/2009JB006535 |
[7] | Ding Kaihua, Xu Caijun, Wen Yangmao. Postseismic Deformation Associated with the 2008 Wenchuan Earthquake GPS Data[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2):131-135(丁开华,许才军,温扬茂.汶川地震震后形变的GPS反演[J].武汉大学学报·信息科学版, 2013, 38(2):131-135) |
[8] | Xu Keke, Wu Jicang, Wang Cheng. Analysis of Fault Aseismic Slip Feature Based on GNSS Displacement Time-Space Series[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9):1247-1252(徐克科,伍吉仓,王成. 利用GNSS位移时空序列进行断层无震蠕滑特征分析[J].武汉大学学报·信息科学版, 2015, 40(9):1247-1252) |
[9] | Jonsson S, Zebker H, Segall P, et al. Fault Slip Distribution of the 1999 Mw 711 Hector Mine, California, Earthquake, Estimated from Satellite Radar and GPS Measurements[J]. Bulletin of the Seismological Society of America, 2002, 92(4):1377-1389 |
[10] | McGuire J J, Segall P. Imaging of Aseismic Fault Slip Transients Recorded by Dense Geodetic Networks[J]. Geophysical Journal International, 2003, 155(3):778-788 |
[11] | Radiguet M, Cotton F, Vergnolle M, et al. Spatial and Temporal Evolution of a Long Term Slow Slip Event:the 2006 Guerrero Slow Slip Event[J]. Geophysical Journal International, 2011, 184(2):816-828 |
[12] | Schwarz K P, Cannon M E, Wong R V C. A Comparison of GPS Kinematic Models for the Determination of Position and Velocity Along a Trajectory[J]. Manuscripta Geodaetica, 1989, 14:345-353 |
[13] | Fang Ying, Jiang Zaisen, Gu Guohua. Network Filtering Method for North China Block Boundary Movement Analysis[J]. Journal of Seismological Research, 2007(2):152-156(方颖,江在森,顾国华.用网络滤波方法探讨华北地块边界带运动[J].地震研究, 2007(2):152-156) |
[14] | Ikari M J, Marone C, Saffer D M, et al. Slip Weakening as a Mechanism for Slow Earthquakes[J]. Nature Geoscience, 2013, 6(6):468-472 |
[15] | Agnew D C. Realistic Simulations of Geodetic Network Data:The Fakenet Package[J]. Seismological Research Letters, 2013, 84(3):426-432 |
[16] | Perfettini H, Avouac J P, Tavera H, et al. Seismic and Aseismic Slip on the Central Peru Megathrust[J]. Nature, 2010, 465(7294):78-81 |
[17] | Segall P, Matthews M. Time Dependent Inversion of Geodetic Data[J]. Journal of Geophysical Research:Solid Earth, 1997,102(B10):22391-22409 |