全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

结合新闻和评论文本的读者情绪分类方法
Reader emotion classification with news and comments

DOI: 10.6040/j.issn.1671-9352.1.2017.003

Keywords: 联合学习,读者情绪分类,双通道LSTM,
reader emotion classification
,joint learning,dual-channel LSTM

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 新闻和评论文本是进行读者情绪分类的重要资源,但仅仅使用新闻和文本或者把2类文本进行混合作为一组总体特征,不能充分利用不同文本特征间的区别和联系。基于此,提出了一种双通道LSTM(long short-term memory)方法,该方法把2类文本作为2组特征,分别用单通道LSTM神经网络学习这2组特征文本得到文本的LSTM表示,然后通过联合学习的方法学习这2组特征间的关系。实验结果表明,该方法能有效提高读者情绪的分类性能。
Abstract: The news and comments are important resources to classify the reader emotion. However, previous studies only used news texts or mixed two types of texts as a general feature, which did not make the best use of the differences and connections between different textual features. Based on it, the paper proposed a new approach named dual-channel LSTM, which treated two types of texts as different features. First, the approach learned a LSTM representation with a LSTM recurrent neural network. Then, it proposed a joint learning method to learn the relationship between the features. Empirical studies demonstrate the effectiveness of the proposed approach to reader emotion classification

References

[1]  刘欢欢. 面向新闻的读者情绪自动分析研究方法[D]. 苏州:苏州大学, 2015. LIU Huanhuan. Automatic classification on readers emotion towards news[D]. Suzhou: Soochow University, 2015.
[2]  XU R F, ZOU C T, XU J. Readers emotion prediction based on partitioned latent dirichlet allocation model[C] //Proceedings of the 2012 International Conference on Pervasive Computing and the Networked World(ICPCA/SWS'12). Heidelberg: Springer-Verlag, 2013: 17-31.
[3]  LIU Huanhuan, LI Shoushan, ZHOU Guodong, et al. Joint modeling of news readers and comment writers emotions[C] //Meeting of the Association for Computational Linguistics. Sofia: Association for Computational Linguistics, 2013: 511-515.
[4]  CHEN Ying, LEE S Y M, LI Shoushan, et al. Emotion cause detection with linguistic constructions[C] //Proceeding of the 23rd International Conference on Computation Linguistics. Stroudsburg: Association for Computational Linguistics(EMNLP'11), 2011:179-187.
[5]  PURVER M, BATTERSBY S. Experimenting with distant supervision for emotion classification[C] //Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics(EACL'12). Stroudsburg: Association for Computational Linguistics, 2012:482-491.
[6]  LIN H Y, CHEN H H. Ranking reader emotions using pairwise loss minimization and emotional distribution regression[C] //Proceedings of the Conference on Empirical Methods in Natural Language Processing(EMNLP08). Stroudsburg: Association for Computational Linguistics, 2008:136-144.
[7]  LIN K H, YANG CHANGHUA, CHEN H. What emotions do news articles trigger in their readers?[C] //Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR'07).New York: ACM, 2007: 733-734.
[8]  LIN K H, YANG Changhua, CHEN H. Emotion classification of online news articles from the readers perspective[C] //Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology(WI-IAT'08). Washington: IEEE Computer Society, 2008: 220-226.
[9]  HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.
[10]  GRAVES A. Supervised sequence labelling with recurrent neural networks[M]. Berlin Heidelberg: Springer, 2012:4-12.
[11]  HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[J]. Computer Science, 2012, 3(4):212-223.
[12]  BAI S, NING Y, YUAN S, et al. Predicting readers emotion on Chinese Web news articles[C] //International Conference on Pervasive Computing and the Networked World. Berlin: International Conference on Pervasive Computing and the Networked World, 2012: 16-27.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133