全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

带有梯度超线性项抛物方程黏性解的比较原理
Comparison principles for viscosity solution of fully nonlinear parabolic equations with superlinear gradient nonlinearities

DOI: 10.6040/j.issn.1671-9352.0.2017.341

Keywords: 退化抛物方程,超线性增长,黏性解,单调系统,比较原理,
degenerate parabolic equations
,viscosity solution,comparison principle,monotone system,superlinear growth

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 研究梯度具有超线性增长的完全非线性抛物方程问题,证明了具有超线性增长的半连续黏性上下解的比较原理的存在,并且把此结果延伸到单调抛物系统中。
Abstract: A problem of fully nonlinear degenerate parabolic partial differential equations with a superlinear gradient nonlinearity is studied. A comparison result is proved between semicontinuous viscosity subsolutions and supersolutions having superlinear growth. We extend our result to monotone systems of parabolic equations

References

[1]  CRANDALL M G, ISHII H, LIONS P-L. Users guide to viscosity solutions of second order partial differential equations[J]. Bulletin of the American Mathematical Society, 1992, 27(1):1-67.
[2]  ALVAREZ O. Bounded-from-below viscosity solutions of Hamilton-Jacobi equations[J]. Differential Integral Equations, 1997,10(3):419-436.
[3]  ISHII H. Comparison results for Hamilton-Jacobi equations without growth condition on solutions from above[J]. Applicable Analysis, 1997, 67(3-4):357-372.
[4]  ISHII K, TOMITA Y. Unbounded viscosity solutions of nonlinear second order PDEs[J]. Advances in Mathematical Sciences and Applications, 2000, 10(2):689-710.
[5]  KOIKE S, LEY O. Comparison principle for unbounded viscosity solutions of degenerate elliptic PDEs with gradient superlinear term[J]. Journal of Mathematical Analysis and Applications, 2001, 381(1):110-120.
[6]  DA-LIO F, LEY O. Uniqueness results for second-order Bellman-Isaacs equations under quadratic growth assumptions and applications[J]. SIAM Journal on Control and Optimization, 2006, 45(1):74-106.
[7]  ISHII H. Uniqueness of unbounded viscosity solution of Hamilton-Jacobi equations[J]. Indiana University Mathematics Journal, 1984, 33(5):721-748.
[8]  AIZAWA S, TOMITA Y. Unbounded viscosity solutions of fully nonlinear elliptic equations in <i>R<sup>n</sup></i>[J]. Advances in Mathematical Sciences and Applications, 1993,2(2):297-316.
[9]  DA-LIO F, LEY O. Convex Hamilton-Jacobi equations under superlinear growth conditions on data[J]. Applied Mathematics and Optimization, 2001, 63(3):309-339.
[10]  CRANDALL M G, ISHII H, LIONS P-L. Viscosity solutions of Hamilton-Jacobi equations[J]. Transactions of the American Mathematical Society, 1983, 277(1):1-42.
[11]  ISHII H, KOIKE S. Viscosity solutions for monotone systems of second-order elliptic PDEs[J]. Communications in Partial Differential Equations, 1991, 16(6):1095-1128.
[12]  BARLES G. Uniqueness and regularity results for first-order Hamilton-Jacobi equations[J]. Indiana University Mathematics Journal, 1990, 39(2):443-466.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133