|
- 2016
基于量子行走的局域与离域化控制及实验方案
|
Abstract:
摘要: 在现有的量子行走实验基础上,进一步提出了在二维量子行走物理装置中的局域化和离域化控制的方案。通过对一维和二维局域化与离域化控制的实验方案的理论分析,引入参数可调的普适投币算符,导出了一般化的量子行走的计算结果,依据理论结果提出了基于集成光波导和光纤装置的可控的安德森效应实验方案。数值仿真实验结果表明量子行走受到电控偏振器控制而出现局域化和离域化现象,验证了所提出设计方案的合理性。
Abstract: A controllable scheme of the Anderson localization and delocalization that is based on the existing experiment of quantum walk is proposed. By the introduction of the adjustable parameters general coin and calculation results, the theory of one and two dimensional control experimental schemes are analyzed. Based on the theoretical results, an integrated optical waveguide and optical fiber devices with controllable Anderson effect experiment scheme is designed. The numerical simulation results show that the localization and delocalization is controlled by electronic polarizer and the rationality of the proposed scheme
[1] | VENEGAS-ANDRACA S E. Quantum walks: a comprehensive review[J]. Quantum Information Processing, 2012, 11(5):1015-1106. |
[2] | STREKALOV D V, KOWLIGY A S, HUANG Y P, et al. Progress towards interaction-free all-optical devices[J]. Physical Review A, 2014, 89(6):063820-063823. |
[3] | MACHTA J. Generalized diffusion coefficient in one-dimensional random walks with static disorder[J]. Phys Rev B, 1981, 24(9):5260-5269. |
[4] | AMBAINIS A. Quantum walks and their algorithmic applications[J]. International Journal of Quantum Information, 2003, 1(4):507-518. |
[5] | SANSONI L, SCIARRINO F, VALLONE G, et al. Two-particle bosonic-fermionic quantum walk via integrated photonics[J]. Phys Rev Lett, 2012, 108(1):010502-010507. |
[6] | DE NICOLA F, SANSONI L, CRESPI A, et al. Quantum simulation of bosonic-fermionic noninteracting particles in disordered systems via a quantum walk[J]. Phys Rev A, 2014, 89(3):032322-032325. |
[7] | INUI N, KONISHI Y, KONNO N.Localization of two-dimensional quantum walks[J].Phys Rev A, 2004, 69(5):052323-052332. |
[8] | BACH E, COPPERSMITH S, GOLDSCHEN M P, et al. One-dimensional quantum walks with absorbing boundaries[J]. Journal of Computer and System Sciences, 2004, 69(4):562-592. |
[9] | ANDERSON P W. Absence of diffusion in certain random lattices[J]. Phys Rev, 1958, 109(5):1492-1505. |
[10] | SCHREIBER A, CASSEMIRO K N, POTOEK V.Photons walking the line: a quantum walk with adjustable coin operations[J].Phys Rev Lett, 2010, 104(5):050502-050506. |
[11] | SANSONI L, SCIARRINO F, VALLONE G.Two-particle bosonic-fermi onic quantum walk via integrated photonics[J].Phys Rev Lett, 2012, 8(1):010502-010507. |
[12] | TREGENNA B, FLANAGAN W, MAILE R, et al.Controlling discrete quantum walks: coins and initial states[J].New J Phys, 2003, 5(1):8301-8319. |
[13] | CHILDS A M, GOLDSTONE J.Spatial search by quantum walk[J].Phys Rev A, 2004, 70(2):022314-022325. |
[14] | CRESPI A, OSELLAME R, RAMPONI R. Anderson localization of entangled photons in an integrated quantum walk[J].Nature Photonics, 2013, 7(4):322-328. |
[15] | REN Chunnian, SHI Peng, LIU Kai, et al. Effects of initial states on continuous-time quantum walk in the optical waveguide array[J]. Acta Phys Sin, 2013, 62(9):090301-090314. |