全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

以真五粒子非最大纠缠态为信道的双向受控隐形传态
Bidirectional controlled teleportation with a genuine five-qubit non-maximally entangled state as quantum channel

DOI: 10.6040/j.issn.1671-9352.0.2017.143

Keywords: 量子通信,双向受控隐形传态,真五粒子非最大纠缠态,投影测量,正算子值测量,
quantum communication
,bidirectional controlled teleportation,genuine five-qubit non-maximally entangled state,projective measurement,positive operator-valued measurement

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 利用投影测量和正算子值测量,分别提出了以真五粒子非最大纠缠态为信道的双向受控隐形传态的两个协议。协议中,作为量子信道的真五粒子非最大纠缠态连接3个合法的参与者;在监督者Charlie的控制下,Alice以一定概率将任意未知单粒子A的态传给Bob,同时Bob也以一定概率将任意未知单粒子B的态传给Alice。这两个协议都是确定性双向隐形传态的推广。
Abstract: By using projective measurement and positive operator-valued measurement, two bidirectional controlled teleportation schemes via a genuine five-qubit non-maximally entangled state are proposed, respectively. In our scheme, such a five-qubit non-maximally state is employed as the quantum channel linking three legitimate participants. And with certain probability, Alice many transmit an arbitrary unknown single-qubit state of qubit A to Bob and Bob many transmit an arbitrary single-qubit state of qubit B to Alice via the control of the supervisor Charlie. Our protocols are the generalization of deterministic bidirectional controlled teleportation

References

[1]  PENG Jiayin, LUO Mingxing, MO Zhiwen. Quantum tasks with non-maximally quantum channels via positive operator-valued measurement[J]. International Journal of Theoretical Physics, 2013, 52(1): 253-265.
[2]  PENG Jiayin, MO Zhiwen. Quantum sharing an unknown multi-particle state via POVM[J]. International Journal of Theoretical Physics, 2013, 52(2):620-633.
[3]  MURALIDHARAN S, JAIN S, PANIGRAHI P K. Splitting of quantum information using <i>N</i>-qubit linear cluster states[J]. Optics Communications, 2010, 284(4):1082-1085.
[4]  JI Qibin, LIU Yimin, XIE Chuanmei, et al. Tripartite quantum operation sharing with two asymmetric three-qubit W states in five entanglement structures[J]. Quantum Information Processing, 2014, 13(8):1659-1676.
[5]  NIE Yiyou, SANG Minghuang, LI Yuanhua. Three-party quantum information splitting of an arbitrary two-qubit state by using six-qubit cluster state[J]. International Journal of Theoretical Physics, 2011, 50(5):1367-1371.
[6]  CHEN Xiubo, WEN Qiaoyan, SUN Zhongxu, et al. Deterministic and exact entanglement teleportation via the W state[J]. Chinese Physics B, 2010, 19(1):41-45.
[7]  ZHANG D, ZHA X W, LI W, et al. Bidirectional and asymmetric quantum controlled teleportation via maximally eight-qubit entangled state[J]. International Journal of Theoretical Physics, 2014, 14(10): 1-9.
[8]  PENG Jiayin, LUO Mingxing, MO Zhiwen. Joint remote state preparation of arbitrary two-particle states via GHZ-type states[J]. Quantum Information Processing, 2013, 12(12):2325-2342.
[9]  PENG Jiayin, BAI Mingqiang, MO Zhiwen. Joint remote state preparation of a four-dimensional quantum state[J]. Chinese Physics Letters, 2014,31(1):5-9.
[10]  PENG Jiayin, LUO Mingxing, MO Zhiwen, et al. Joint remote preparation of arbitrary three-qubit states[J]. Modern Physics Letters, 2013, 27(22):1350160.
[11]  张瑾. 多量子纠缠的制备和操纵[D]. 合肥:中国科学技术大学,2007. ZHANG Jin. Preparation and manipulation of multiple quantum entanglement[D]. Hefei: University of Science and Technology of China, 2007.
[12]  CHEN Yan. Bidirectional quantum controlled teleportation by using a genuine six-qubit entangled state[J]. International Journal of Theoretical Physics, 2015, 54(1):269-272.
[13]  YAN A. Bidirectional controlled teleportation via six-qubit cluster state[J]. International Journal of Theoretical Physics, 2013, 52(11):3870-3873.
[14]  LEE J, MIN H, OH S D. Multipartite entanglement for entanglement teleportation[J]. Physical Review A, 2002, 66(5):357-364.
[15]  HOU Kui, LI Yibao, SHI Shouhua. Quantum state sharing with a genuinely entangled five-qubit state and Bell-state measurements[J]. Optics Communications, 2010, 283(9):1961-1965.
[16]  NIE Yiyou, LI Yuanhua, JIN Cuiping, et al. Quantum information splitting of an arbitrary multi-qubit GHZ-type state by using a four-qubit cluster state[J]. International Journal of Theoretical Physics, 2011, 10(9):603-608.
[17]  DUAN Yajun, ZHA Xinwei, SUN Xinmei, et al. Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state[J]. International Journal of Theoretical Physics, 2014, 53(8): 2697-2707.
[18]  SHUKLA C, BANERJEE A, PATHAK A. Bidirectional controlled teleportation by using 5-qubit states: a generalized view[J]. International Journal of Theoretical Physics, 2013, 52(10):3790-3796.
[19]  DENG Fuguo, LI Chunyan, LI Yansong, et al. Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement[J]. Physical Review A, 2005, 72(2):656-665.
[20]  PENG Jiayin, MO Zhiwen. Several teleportation schemes of an arbitrary unknown multi-particle state via different quantum channels[J]. Chinese Physics B, 2013,22(5):160-167.
[21]  WANG T J, ZHOU H Y, DENG F G. Quantum state sharing of an arbitrary <i>m</i>-qudit state with two-qudit entanglements and generalized Bell-state measurements[J]. Physica A Statistical Mechanics & its Applications, 2008, 387(18):4716-4722.
[22]  CIRAC J I, ZOLLER P, KIMBLE H J, et al. Quantum state transfer and entanglement distribution among distant nodes in a quantum network[J]. Physical Review Letters, 1996, 78(16):3221-3224.
[23]  LI Yuanhua, JIN Xianmin. Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments[J]. Quantum Information Processing, 2015, 15(2):1-17.
[24]  YUAN Hao, LIU Yimin, ZHANG Wen. Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing[J]. Journal of Physics B Atomic Molecular & Optical Physics, 2008, 41(14):145506.
[25]  HUELGA S F, PLENIO M B, VACCARO J A. Remote control of restricted sets of operations: teleportation of angles[J]. Physical Review A, 2001, 65(4):579-579.
[26]  ZHA Xinwei, ZOU Zhichun, QI Jianxia, et al. Bidirectional quantum controlled teleportation via five-qubit cluster state[J]. International Journal of Theoretical Physics, 2013, 52(6):1740-1744.
[27]  LI Yuanhua, NIE Lipin. Bidirectional controlled teleportation by using a five-qubit composite GHZ-Bell state[J]. International Journal of Theoretical Physics, 2013, 52(5):1630-1634.
[28]  CHEN Yan. Bidirectional controlled quantum teleportation by using five-qubit entangled state[J]. International Journal of Theoretical Physics, 2014, 53(5):1454-1458.
[29]  BENNETT C H, BRASSARD G, CREPEAU C, et al. Teleporting an unknown suantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Physical Review Letters, 1993, 70(13):1895.
[30]  GORBACHEV V N, TRUBILKO A I, RODICHKINA A A, et al. Can the states of the W-class be suitable for teleportation?[J]. Physics Letters A, 2003, 314(4):267-271.
[31]  PENG Jiayin, BAI Mingqiang, MO Zhiwen. Hierarchical and probabilistic quantum state sharing via a non-maximally entangled |χ〉 state[J]. Chinese Physics B, 2014, 23(1): 010304(1-6).
[32]  BENNET C H, WIESNER S J. Quantum key distribution using non-orthogonal macroscopic signals: US, US 5515438 A[P]. 1996.
[33]  EKERT A K. Quantum cryptography based on Bell’s theorem[J]. Physical Review Letters, 1991, 67(6):661-663.
[34]  ZHANG Z, LIU Y, WANG D. Perfect teleportation of arbitrary <i>n</i>-qudit states using different quantum channels[J]. Physics Letters A, 2007, 372(1):28-32.
[35]  JIANG Min, LI Hui, ZHANG Zengke, et al. Faithful teleportation of multi-particle states involving multi spatially remote agents via probabilistic channels[J]. Physica A Statistical Mechanics & its Applications, 2011, 390(4):760-768.
[36]  DAI Hongyi, MING Z, LI C Z. Probabilistic teleportation of an unknown entangled state of two three-level particles using a partially entangled state of three three-level particles[J]. Physics Letters A, 2004, 323(5/6):360-364.
[37]  ZHANG Z J. Controlled teleportation of an arbitrary <i>n</i>-qubit quantum information using quantum secret sharing of classical message[J]. Physics Letters A, 2006, 352(1/2):55-58.
[38]  BENNET C H. Quantum cryptography using any two nonorthogonal states[J]. Physical Review Letters, 1992, 68(68):3121-3124.
[39]  HUELGA S F, VACCARO J A, CHEFLES A, et al. Quantum remote control: teleportation of unitary operations[J]. Physical Review A, 2001, 63(4):392-396.
[40]  PENG Jiayin, LUO Mingxing, MO Zhiwen, et al. Flexible deterministic joint remote state preparation of some states[J]. International Journal of Quantum Information, 2013, 11(4):1350044.
[41]  PENG Jiayin, BAI Mingqiang, MO Zhiwen. Remote information concentration by W state[J]. International Journal of Modern Physics B, 2013, 27(26):1350137.
[42]  周润南,宋汉冲,龚黎华,等.基于GHZ态的三方量子确定性密钥分配协议[J]. 物理学报,2012,61(21):214203(1-7). ZHOU Runnan, SONG Hanchong, GONG Lihua, et al. Quantum deterministic key distribution protocol based on GHZ states entanglement swapping[J]. Acta Phys Sin, 2012,61(21):214203(1-7).
[43]  LI Yuanhua, LI Xiaolan, SANG Minghuang, et al. Splitting unknown two-qubit state using five-qubit entangled state[J]. International Journal of Theoretical Physics, 2014, 53(1):111-115.
[44]  WANG Wenhua, CAO Huaixin. An improved multiparty quantum secret sharing with Bell states and Bell measurement[J]. International Journal of Theoretical Physics, 2013, 52(6):2099-2111.
[45]  MURALIDHARAN S, PANIGRAHI P K. Perfect teleportation, quantum state sharing and superdense coding through a genuinely entangled five-qubit state[J]. Physical Review A, 2008, 77(3): 156-156.
[46]  HOU Kui, LI Yibao, SHI Shoushi. Quantum state sharing with a genuinely entangled five-qubit state and Bell-state measurements[J]. Optics Communications, 2010, 283(9):1961-1965.
[47]  LUO Mingxing, DENG Yun, CHEN Xiubo, et al. Faithful quantum broadcast beyond the no-go theorem[J]. Quantum Information Processing, 2013, 12(5):1969-1979.
[48]  ALLATI A E, BAZ M E. Quantum key distribution using optical coherent states via amplitude damping[J]. Optical & Quantum Electronics, 2015, 47(5):1035-1046.
[49]  PENG Jiayin, BAI Mingqiang, MO Zhiwen. Remote information concentration via W state: reverse of ancilla-free phase-covariant telecloning[J]. Quantum Information Processing, 2013, 12(11): 3511-3525.
[50]  PENG Jiayin, LEI Hongxuan, MO Z W. Faithful remote information concentration based on the optimal universal 1→2 telecloning of arbitrary two-qubit states[J]. International Journal of Theoretical Physics, 2014, 53(5):1637-1647.
[51]  PENG Jiayin, LUO Mingxing, MO Zhiwen. Remote information concentration via four-particle cluster state and by positive operator-value measurement[J]. International Journal of Modern Physics B, 2013, 27(18): 50091.
[52]  NIE Yiyou, LI Yuanhua, SANG Minghua. Controlled dense coding through a genuine five-atom entangled state in cavity QED[J]. International Journal of Theoretical Physics, 2012, 51(8):2341-2345.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133