全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

带变量核的Marcinkiewicz积分算子在变指标Herz型Hardy空间上的有界性
Boundedness of Marcinkiewicz integrals operators with variable kernels on Herz-type Hardy spaces with variable exponent

DOI: 10.6040/j.issn.1671-9352.0.2017.646

Keywords: Herz型Hardy空间,变指标,Marcinkiewicz积分,
Herz-type Hardy space
,variable exponent,Marcinkiewicz integrals operator

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 借助Marcinkiewicz积分在变指标Lebesgue空间的性质以及变指标Herz型Hardy空间上的原子分解理论,得到了带变量核的Marcinkiewicz积分算子在齐次及非齐次变指标Herz型Hardy空间上的有界性。
Abstract: Based on the boundedness of Marcinkiewicz integrals on variable Lebesgue spaces and the atomic decomposition of Herz-type Hardy spaces with variable exponent, we obtain the boundedness of Marcinkiewicz integrals with variable kernels on the homogeneous and non-homogeneous Herz-type Hardy spaces with variable exponent

References

[1]  IZUKI M. Boundedness of sublinear operators on Herz spaces with variable exponent and application to waveiet charactization[J]. Analysis Mathematica, 2010, 36(36):33-50.
[2]  WANG Hongbin,LIU Zongguang. The Herz type Hardy spaces with variable exponent and their application[J]. Taiwannese Journal of Mathematics, 2012, 16(4):1363-1389.
[3]  KOVáCIK O, RáKOSNíK J. On spaces <i>L<sup>p(x)</sup></i> and <i>W<sup>k,p(x)</sup></i>[J]. Czechoslovak Mathematical Journal, 1991, 41(4):592-618.
[4]  MUCKENHOUPT B,WHEEDEN R L. Weighted norm inequalities for singualar and fractional integrals[J]. Transactions of the American Mathematical Society, 1971, 161:249-258.
[5]  陈杰诚, 丁勇, 范大山. 带变量核的Littlewood-Paley算子[J]. 中国科学(A辑), 2006, 36(1):38-51. CHEN Jiecheng, DING Yong, FAN Dashan. Littlewood-Paley operators with variable kernels[J]. Science in China(Series A), 2006, 36(1):38-51.
[6]  XUE Qingying, YABUTA K. <i>L</i><sup>2</sup>-Boundedness of Marcinkiewicz Integrals along surfaces with variable kernels[J]. Sci Math Japonicae, 2006, 63(3):369-382.
[7]  DING Yong, LU Shanzhen, SHAO Shuanglin. Integral operators with varlable kernels on weak Hardy spaces[J]. Journal of Mathematical Analysis Applications, 2006, 317(1):127-135.
[8]  陶双平, 辛银萍. 带变量核的参数型 Littlewood-Paley算子在Hardy空间上的有界性[J]. 山东大学学报(理学版), 2010, 45(12):49-56. TAO Shuangping, XIN Yinping. Boundedness of Littlewood-Paley operators with variable kernels on Hardy spaces[J].Journal of Shandong University(Natural Science), 2010, 45(12):49-56.
[9]  张璞,陈杰诚. 一类带有变量核的积分算子在Herz型Hardy空间的有界性[J]. 数学年刊, 2005, 25A(5):561-570. ZHANG Pu, CHEN Jiecheng. A class of integral operators with variable kernels on the Herz-type hardy spaces[J]. Chinese Annals of Mathematics, 2005, 25A(5):561-570.
[10]  NAKAI E, SAWANO Y. Hardy spaces with variable exponents and generalized Campanato spaces[J]. Journal of Functional Analysis, 2012, 262(9):3665-3748.
[11]  ZYGMUND A. On singular integral with variable kernels[J]. Applicable Analysis,1978, 7(3):221-238.
[12]  SAKAMOTO M, YABUTA K. Boundedness of marcinkieicz functions[J]. Studia Math, 1999, 135:103-142.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133