全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

复形的 FR-内射维数与 FR-平坦维数
FR-injective and FR-flat dimensions of complexes

DOI: 10.6040/j.issn.1671-9352.0.2017.524

Keywords: 模型结构,FR-内射(投射)维数,FR-平坦(余挠)维数,
FR-injective(projective)dimension
,FR-flat(cotorsion)dimension,model structure

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 引入并研究了复形的 FR-内射维数与 FR-平坦维数, 借助相应的余挠对得到了两个新的 Quillen 模型结构。
Abstract: The notion of FR-injective and FR-flat dimensions of complexes is introduced and investigated. Two new Quillen model structures are also obtained by means of corresponding cotorsion pairs

References

[1]  ASADOLLAHI J, SALARIAN Sh. Cohomology theories based on Gorenstein injective modules[J]. Trans Amer Math Soc, 2006, 358(5): 2183-2203.
[2]  LIU Zhongkui, REN Wei. Transfer of Gorenstein dimensions of unbounded complexes along ring homomorphisms[J]. Comm. Algebra, 2014, 42(8): 3325-3338.
[3]  GARCíA R J R. Covers and envelopes in the category of complexes of modules[M]. Chapman & Hall/CRC Press, 1999.
[4]  YANG Gang, LIU Zhongkui. Cotorsion pairs and model structure on Ch(R)[J]. Proc Edinb Math Soc, 2011, 54(3): 783-797.
[5]  AVRAMOV L L, FOXBY H B. Homological dimensions of unbounded complexes[J]. Journal of Pure & Applied Algebra, 1991, 71(2/3):129-155.
[6]  LU Bo, LIU Zhongkui. Relative injectivity and flatness of complexes[J]. Kodai Math J, 2013, 36(2): 343-362.
[7]  ENOCHS E E, OYONARTE L. Covers, envelopes and cotorsion theories[M]. New York: Nova Science Publishere, 2002.
[8]  COSTA D L. Parameterizing families of non-noetherian rings[J]. Comm Algebra, 1994, 22(10): 3997-4011.
[9]  MAO Lixin, DING Nanqing. Relative projective modules and relative injective modules[J]. Comm Algebra, 2006, 34(7): 2403-2418.
[10]  VERDIER J L. Cat'egories D'eriv'ees[M]. Lecture Notes in Math, 569, Berlin: Springer-Verlag, 1977: 262-311.
[11]  章璞. 三角范畴与导出范畴[M].北京:科学出版社, 2015:110-135. ZHANG Pu. Triangulated categories and derived categories[M]. Beijing: Science Press, 2015:110-135.
[12]  GILLESPIE J. The flat model structure on Ch(R)[J]. Trans Amer Math Soc, 2004, 356(8): 3369-3390.
[13]  CHRISTENSEN L W. Gorenstein dimensions[M]. Berlin: Springer-Verlag, 2000.
[14]  VELICHE O. Gorenstein projective dimension for complexes[J]. Transactions of the American Mathematical Society, 2006, 358(3):1257-1283.
[15]  ZHOU Dexu. On <i>n</i>-coherent rings and(<i>n, d</i>)-rings[J]. Comm Algebra, 2004, 32(6): 2425-2441.
[16]  HOVEY M. Model categories[M]. Mathematical Surveys and Monographs, 63, Providence, RI: American Mathematical Society, 1999.
[17]  HOVEY M. Cotorsion pairs, model category structures, and representation theory[J]. Math Z, 2002, 241(3): 553-592.
[18]  任伟. 复形范畴与三角范畴中的相对同调维数[D].兰州:西北师范大学, 2013. REN Wei. Relative homological dimensions in the category of complexes and triangulated categories[D]. Lanzhou: Northwest Normal University, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133