全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

带有变阻尼的随机振动方程的逼近
Approximation of stochastic vibration equations with variable damping

DOI: 10.6040/j.issn.1671-9352.0.2017.343

Keywords: 随机振动方程,变阻尼,逼近,
approximation
,stochastic vibration equation,variable damping

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 研究带有变阻尼和奇异扰动的随机振动方程的逼近问题,证明了当奇异扰动趋向0时, 原方程的解由相应的确定性方程的解进行逼近。
Abstract: The approximation of a stochastic vibration equation with variable damping and singular perturbation is studied in this paper. It is proved that when the singular perturbation tends to 0, the solution of the original equation is approximated by the solution of the corresponding deterministic equation

References

[1]  LYU Yan, WANG Wei. Limiting dynamics for stochastic wave equations[J]. Journal of Differential Equations, 2008, 244(1):1-23.
[2]  FREIDLIN M, HU W, WENTZELL A. Small mass asymptotic for the motion with vanishing friction[J]. Stochastic Processes and their Applications, 2013, 123(1):45-75.
[3]  RAMONA WESTERMANN. Smoluchowski-Kramers approximation for stochastic differential equations and applications in behavioral finance[D]. North Rhine Westphalia: Universitat Bielefeld, 2006.
[4]  FREIDLIN M. Some remarks on the Smoluchowski-Kramers approximation[J]. Journal of Statistical Physics, 2004, 117(3):617-634.
[5]  CERRAI S, FREIDLIN M, SALINS M. On the Smoluchowski-Kramers approximation for SPDEs and its interplay with large deviations and long time behavior[J]. Discrete and Continuous Dynamical Systems(Series A), 2017, 37(1):33-76.
[6]  CERRAI S, FREIDLIN M. Averaging principle for a class of stochastic reaction—diffusion equations[J]. Probability Theory and Related Fields, 2009, 144(1/2):137-177.
[7]  LYU Yan, ROBERTS A J. Averaging approximation to singularly perturbed nonlinear stochastic wave equations[J]. Journal of Mathematical Physics, 2012, 53(6):559-588.
[8]  LYU Yan, ROBERTS A J. Large deviation principle for singularly perturbed stochastic damped wave equations[J]. Stochastic Analysis and Applications, 2014, 32(1):50-60.
[9]  WONG E, ZAKAI M. On the convergence of ordinary integrals to stochastic integrals[J]. Annals of Mathematical Statistics, 1965, 36(5):1560-1564.
[10]  BERNT ?ksendal. 随机微分方程导论与应用[M].北京:科学出版社, 2012. BERNT ?ksendal. Stochastic differential equations[M]. Beijing: Science Press, 2012.
[11]  LYU Yan, WANG Wei. Limit behavior of nonlinear stochastic wave equations with singular perturbation[J]. Discrete and Continuous Dynamical Systems(Series B), 2012, 13(1):175-193.
[12]  李静. Cauchy-Schwarz不等式的四种形式的证明及应用[J].宿州学院学报, 2008, 23(6):95-96. LI Jing.The proof and application of four forms of Cauchy-Schwarz inequality[J].Journal of Suzhou University, 2008, 23(6):95-96.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133