全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

次线性期望框架下乘积空间的正则性
Regularity for product space under sublinear expectation framework

DOI: 10.6040/j.issn.1671-9352.0.2017.340

Keywords: 正则性,次线性期望,乘积空间,完备可分距离空间,
regularity
,product space,sublinear expectation,complete separable metric space

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 证明了一列正则次线性期望空间的乘积空间是正则的。进一步,在样本空间都是完备可分距离空间的假设下,证明了乘积空间的完备化空间仍然是正则的。
Abstract: This paper proves that the product space for a sequence regular sublinear expectation spaces is regular. Furthermore, the sample spaces are all complete separable metric spaces under the assumption, it is shown that the completion of the product space is still regular

References

[1]  严加安. 测度论讲义[M]. 北京:科学出版社,2004. YAN Jiaan. Lecture notes in measure theory[M]. Beijing: Science Press: 2004.
[2]  PENG Shige. G-expectation, G-Brownian motion and related stochastic calculus of It? type[J]. Stochastic Analysis and Applications, 2006, 2(4):541-567.
[3]  PENG Shige. Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation[J]. Stochastic Processes and Their Applications, 2008, 118(12):2223-2253.
[4]  PENG Shige. A new central limit theorem under sublinear expectations[J]. Mathematics, 2008, 53(8):1989-1994.
[5]  PENG Shige. Nolinear expectations and stochastic calculus under uncertainty[EB/OL]. [2017-02-06]. http://arxiv.org/abs/1002.4546v1
[6]  HU Mingshang, PENG Shige. On representation theorem of G-expectations and paths of G-Brownian motion[J]. Acta Mathematicae Applicatae Sinica English, 2009, 25(3):539-546.
[7]  PENG Shige. Filtration consistent nonlinear expectations and evaluations of contingent claims[J]. Acta Mathematicae Applicatae Sinica, English Series, 2004, 20(2):1-24.
[8]  PENG Shige. Nonlinear expectations and nonlinear Markov chains[J]. Chinese Annals of Mathematics: Series B, 2005, 26(2):159-184.
[9]  DENIS L, HU Mingshang, PENG Shige. Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion paths[J]. Potential Analysis, 2011, 34(2):139-161.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133