|
- 2018
具有渐近非负Ricci曲率完备非紧的黎曼流形
|
Abstract:
摘要: 研究了一类具有渐近非负Ricci曲率完备非紧的n维黎曼流形,利用推广的Excess函数和Busemann函数,证明了具有渐近非负Ricci曲率完备非紧的n维黎曼流形在kp(r)≥-C/((1+r)α)和大体积增长的条件下具有有限拓扑型,从而推广了已有的一系列结果。
Abstract: We study the topology of complete noncompact Riemannian manifolds with asymptotically nonnegative Ricci curvature. By using extensions of Excess function and Busemann function, it is proved that they have finite topological type under sectional curvature bounded from nonnegative below kp(r)≥- C/((1+r)α) and large volume growth, which extend a series known results
[1] | MAHAMAN B. Topology of manifolds with asymptotically nonnegative Ricci curvature[J]. African Diaspora Journal of Mathematics, 2015, 18(2):11-17. |
[2] | MACHIGASHIRA Y. Complete open manifolds of non-negative radial curvature[J]. Pacific Journal of Mathematics, 1994, 165(1):153-160. |
[3] | MAHAMAN B. A volume comparison theorem and number of ends for manifolds with asymptotically nonnegative Ricci curvature[J]. Revista Matemática Complutense, 2000, 13(2):399-409. |
[4] | ABRESCH U. Lower curvature bounds, Toponogovs theorem, and bounded topology I[J]. Annales Scientifiques De L école Normale Supérieure, 1985, 18(4):651-670. |
[5] | SHEN Zhongmin. Complete manifolds with nonnegative Ricci curvature and large volume growth[J]. Inventiones Mathematicae, 1996, 125(3):393-404. |
[6] | CHEEGER J. Critical points of distance functions and applications to geometry[M]. Berlin:Springer, 1991:1-38. |
[7] | SHA Jiping, SHEN Zhongmin.Complete manifolds with nonnegative Ricci curvature and quadratically nonnegatively curved infinity[J]. American Journal of Mathematics, 1997, 119(6):1399-1404. |
[8] | HU Zisheng, XU Senlin. Complete manifolds with asymptotically nonnegative Ricci curvature and weak bounded geometry[J]. Archiv Der Mathematik, 2007, 88(5):455-467. |
[9] | SANTOS L, NEWTON L. Manifolds with asymptotically nonnegative minimal radial curvature[J]. Advances in Geometry, 2007, 7(3):331-355. |
[10] | YEGANEFAR N. Topological finiteness for asymptotically nonnegatively curved manifolds[J]. Mathematics, 2009, 108(1):109-134. |
[11] | ABRESCH U. Lower curvature bounds, Toponogovs theorem,and bounded topology Ⅱ[J]. Annales Scientifiques De L école Normale Supérieure, 1987, 20(3):475-502. |
[12] | ZHU Shunhui. A volume comparison theorem for manifolds with asymptotically nonnegative curvature and its applications[J]. American Journal of Mathematics, 1994, 116(3):669-682. |
[13] | ABRESCH U, GROMOLL D. On complete manifolds with nonnegative Ricci curvature[J]. Journal of the American Mathematical Society, 1990, 3(2):355-374. |
[14] | MAHAMAN B. Open manifolds with asymptotically nonnegative curvature[J]. Illinois Journal of Mathematics, 2005, 49(3):705-717. |
[15] | ZHANG Yuntao. Open manifolds with asymptotically nonnegative Ricci curvature and large volume growth[J]. Proceedings of the American Mathematical Society, 2015, 143(18):4913-4923. |