全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

一种基于浅层卷积神经网络的隐写分析方法
Steganalysis method based on shallow convolution neural network

DOI: 10.6040/j.issn.1671-9352.2.2017.294

Keywords: 神经网络,深度学习,浅层卷积,隐写分析,
steganalysis
,shallow convolution,neural network,deep learning

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 为提高隐写分析的检测准确率,提出了一种基于浅层卷积神经网络的图像隐写分析方法。与深度卷积神经网络相比,浅层卷积神经网络通过减少卷积层和禁用池化层,来加快神经网络收敛速度和减少隐写特征丢失,同时采用增加卷积核数、使用批正则化以及使用单层全连接层的方式,提高隐写分析网络的泛化性能。实验结果表明,针对S-UNIWARD隐写算法,在嵌入率为0.4 bpp和0.1 bpp时,检测准确率分别能达到96%和81.7%,同时在载体库源及嵌入率失配情况下,该方法仍能保持较好的检测性能。
Abstract: In order to improve the detection rate of steganalysis, a method of image steganalysis based on shallow convolution neural network is proposed. Compared with the deep convolution neural network, the shallow convolution neural network can improve the convergence speed of the neural network and reduce the loss of the steganography feature by reducing the convolution layer and disabling the pool layer. At the same time, the generalization performance of the steganalysis network is improved by using batch normalization functions and using a single fully connected layer. The experimental results show that the detection accuracy can reach 96% and 81.7% respectively when the embedding rate is 0.4 bpp and 0.1 bpp. And the method is still maintain a better detection performance in the case of carrier source and embedding rate mismatch

References

[1]  PIBRE L, PASQUET J, IENCO D, et al. Deep learning is a good steganalysis tool when embedding key is reused for different images, even if there is a cover source-mismatch[J]. Electronic Imaging, 2016, 4(8):1-11.
[2]  HOLUB V, FRIDRICH J. Designing steganographic distortion using directional filters[C] // Proceedings of the IEEE International Workshop on Information Forensics and Security. Tenerife:[s.n.] , 2013: 234-239.
[3]  HOLUB V, FRIDRICH J, DENEMARK T. Universal distortion function for steganography in an arbitrary domain[J]. Eurasip Journal on Information Security, 2014, 2014(1):1. DOI:10.1186/1687-417X-2014-1.
[4]  FRIDRICH J, KODOVSKY J. Rich models for steganalysis of digital images[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(3):868-882.
[5]  PEVNY T, FILLER T, BAS P. Using high-dimensional image models to perform highly undetectable steganography[C] // Proceedings of the 12th International Conference on Information Hiding. Calgary:[s.n.] , 2010: 161-177.
[6]  LI Bin, WANG Ming, HUANG Jiwu, et al. A new cost function for spatial image steganography[C] // IEEE International Conference on Image Processing.[S.l.] :[s.n.] , 2014: 4206-4210.
[7]  IOFFE S, SZEGEDY C. Batch normalization: accelerating deepnetwork training by reducing internal covariate shift[J]. OALib Journal, 2015, 3:448-456. arXiv:1502.03167.
[8]  KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C] // Advances in Neural Information Processing Systems 25. Curran Associates: NIPS, 2012: 1097-1105.
[9]  CHANG Chihchung, LIN Chihjen. LIBSVM: a library for support vector machines[J]. ACM Transactions on Intelligent Systems & Technology, 2011, 2(3):1-27.
[10]  KODOVSKY J, FRIDRICH J, HOLUB V. Ensemble classifiers for steganalysis of digital media[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(2):432-444.
[11]  QIAN Yinlong, DONG Jing, WANG Wei, et al. Deep learning for steganalysis via convolutional neural networks[C] // Proceedings of SPIE Media Watermarking, Security, and Forensics. San FranciscoL: SPIE. 2015: 9409:94090J-94090J-10.
[12]  BAS P, FILLER T, PEVNY T. Break our steganographic system: the ins and outs of organizing BOSS[J]. Journal of the American Statistical Association, 2011, 96:488-499.
[13]  XU Guanshuo, WU Hanzhou, SHI Yunqing. Structural design of convolutional neural networks for steganalysis[J]. IEEE Signal Processing Letters, 2016, 23(5):708-712.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133