|
- 2018
带超越共振点非线性项的二阶常微分方程边值问题的可解性
|
Abstract:
摘要: 考虑非线性二阶常微分方程边值问题:{u″+f(t,u)=h(t), t∈(0,1),u(0)=u(1)=0,得到了当(f(t,s))/s 在某些“较小的集合”上超出特征值区间[λk0, λk0+1] 时,该问题解的存在唯一性结果。
Abstract: We study the existence and uniqueness of solutions of the boundary value problem for nonlinear second-order ordinary equations:{u″+f(t,u)=h(t), t∈(0,1),u(0)=u(1)=0,under the conditions that (f(t,s))/s may exceeds the eigenvalue interval [λk0, λk0+1] in some “smaller sets”. The existence and uniqueness of solutions of this equation are obtained
[1] | TERSIAN S A. A minimax theorem and applications to nonresonance problems for semilinear equations[J]. Nonlinear Analysis, 1986, 10(7):651-668. |
[2] | MAWBIN J. An extension of a theorem of A.C. Lazer on forced nonlinear oscillations[J]. Journal of Mathematical Analysis and Applications, 1972, 40(1):20-29. |
[3] | USMANI R A. A uniqueness theorem for a boundary value problem[J]. Proceedings of the American Mathematical Society, 1979, 77(3):329-335. |
[4] | DOLPH C L. Nonlinear integral equations of the Hammerstein type[J]. Transactions of the American Mathematical Society, 1949, 66(7):289-307. |
[5] | MAWBIN J, JR WARD J R. Nonresonance and existence for nonlinear elliptic boundary value problems[J]. Nonlinear Analysis, 1981, 5(6):677-684. |
[6] | MA Ruyun, LUO Hua, GAO Chenhua. On nonresonance problems of second-order difference systems[J]. Advances in Difference Equations, 2008, 2008(1):572-591. |
[7] | 马如云.线性微分方程的非线性扰动[M]. 2版. 北京:科学出版社,2008. MA Ruyun. Nonlinear perturbation of linear differential equations[M]. 2nd ed. Beijing: Science Press, 2008. |