|
- 2017
多重Gabor框架的存在性与稳定性
|
Abstract:
摘要: 鉴于冗余框架在信号处理与图像处理中起着重要的作用,研究了多重Gabor框架的存在性与扰动,给出多重Gabor框架存在的充分条件。 表明Gabor框架经过扰动后的函数族仍然是Gabor框架。 证明了不规则Gabor框架具有稳定性。
Abstract: Since redundant frames are play very important role in signal processing and image processing, existence and perturbation for multiple Gabor frames are studied in this paper. The sufficient condition for the existence of multiple Gabor frames is proposed. It is shown that a function which is the generator of Gabor frames is also a generator of Gabor frames after it is perturbed. According to the frame stability criterion, we prove that a class of irregular Gabor frames are stable frames as well
[1] | 黄永东,李秋富. <i>a</i>进制最小能量小波框架的构造[J]. 中国科学(信息科学), 2013, 43(4):469-487. HUANG Yongdong, LI Qiufu. Characterzations of minimum-energy wavelet frames on intervals with arbitrary integer dilation factors[J]. Science China(Information Science), 2013, 43(4):469-487. |
[2] | 曲长文, 何友, 刘卫华,等. 框架理论及应用[M]. 北京:国防工业出版社, 2009. QU Changwen, HE You, LIU Weihua, et al. Framework theory and application[M]. Beijing: National Defense Industry Press, 2009. |
[3] | DAUBECHIES I, HAN B, Ron A, SHEN Z. Framelets: MRA-based construction of wavelet frames[J]. Applied and Computational Harmonic Analysis, 2003, 14(1):1-46. |
[4] | 何永滔. 紧支撑的最小能量框架[J]. 计算数学, 2011, 33(2):166-176. HE Yongtao. Compactly supported minimum energy frame[J]. Mathematica Numerica Sinica, 2011, 33(2):166-176. |
[5] | 樊起斌,鲁大用.一类周期紧小波框架的构造[J]. 数学年刊, 2012, 33A(3):341-350. FAN Qibin, LU Dayong. Construction of a class of periodic tight wavelet frames[J]. Chinese Annals of Mathematics, 2012, 33A(3):341-350. |
[6] | 郭蔚,彭立中.多小波框架的构造理论[J].中国科学(数学), 2010, 40(10):1115-1128. GUO Wei, PENG Lizhong. The construct theory of multiwavelet frames[J]. Science China(Mathematics), 2010, 40(10):1115-1128. |
[7] | BENEDETTO J, LI Shidong. The theorem of multiresolution anaysis frames and application to filter banks[J]. Applied and Computational Harmonic Analysis, 1998, 5(4):398-427. |
[8] | SUN Wenchang. G-frames and g-Riesz bases[J]. Journal of Mathematical Analysis and Applications, 2006, 322(1):437-452. |
[9] | SUN Wenchang. Stability of g-frames[J]. Journal of Mathematical Analysis and Applications, 2007, 326(2):858-868. |
[10] | CHRISTENSENO. An introduction to frames and Riesz bases[M]. Boston: Birkhauser, 2003. |
[11] | 杨守志,郑贤伟. <i>L<sup></sup></i>2<i>(R<sup>n</sup>)</i>上的半正交多小波框架[J]. 中国科学(数学), 2014, 44(3):249-262. YANG Shouzhi, ZHENG Xianwei. Semi-orthogonal multiwavelet frames in <i>L<sup></sup></i>2<i>(R<sup>n</sup>)</i>[J]. Science China(Mathematics), 2014, 44(3):249-262. |