全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

单个MoS2纳米片氢析出催化特性研究
Hydrogen Evolution Properties on Individual MoS2 Nanosheets

DOI: 10.13208/j.electrochem.160562

Keywords: MoS2,边缘,纳米电极,氢析出反应,
MoS2
,edges,nanoelectrodes,hydrogen evolution reaction.

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 MoS2作为高效的电催化氢析出(HER)催化剂已有大量文献报道. 实验和DFT计算结果都表明MoS2的高氢析出活性来源于边缘,而其基面是催化惰性的。为了进一步验证此结论,本文利用巯基羧酸在恒电位下自组装单层修饰的纳/微米电极固定不同尺寸的单个纳米片状,对MoS2氢析出催化活性与其尺寸的关系进行研究,发现纳米片状MoS2具有较高的催化活性,同时较小尺寸的MoS2氢析出活性更高,说明MoS2的边缘的增多对其催化活性有巨大提升,即证明了边缘部分具有更高的氢析出催化活性.
Molybdenum disulfide (MoS2) has been acknowledged to play important roles in hydrogen evolution reaction (HER) for hydrogen energy technology. Both computational and experimental results have suggested that the promising catalytic activity of MoS2 for the HER could be attributed to the sulfur edges of two-dimensional nanosheets, while their basal planes were catalytically inert. In order to verify this conclusion, we prepared single MoS2 sheet electrodes which were made of individual MoS2 sheets attached on the self-assembly monolayers (SAM) of SH(CH2)15COOH at Au ultramicroelectrodes (Au/SAM/MoS2). The single MoS2 sheet electrodes were prepared by dipping the SAM-modified Au ultramicroelectrodes in dilute solutions of MoS2 sheets whose sizes were similar to or slightly smaller than the Au/SAM electrodes. The electrocatalytic properties of the as-prepared single MoS2sheet electrodes with different sizes for HER were investigated in 0.5 mol·L-1 H2SO4. It is shown that the nanoscale MoS2 sheets exhibited superior HER activity over the microsize MoS2 sheets. This is because of the abundantly exposed active sites on the nanoscale MoS2 and the individual nanosheet could reflect its intrinsic reactivity more exactly. It directly proved that the active sites of MoS2 in HER were at the edges

References

[1]  Karunadasa H I, Montalvo E, Sun Y J, et al. A Molecular MoS2 edge site mimic for catalytic hydrogen generation[J]. Science, 2012, 335(6069): 698 -702.
[2]  Voiry D, Salehi M, Silva R, et al. Conducting MoS2 Nanosheets as Catalysts for Hydrogen Evolution Reaction[J]. Nano Letters, 2013, 13(12):6222-6227.
[3]  Chianelli R R, Siadati M H, Rosa M P, et al. Catalytic properties of single layers of transition metal sulfide catalytic materials[J]. Catalysis Reviews, 2006, 48(1):1-41.
[4]  Laursen A B, Kegn?s S, Dahl S, et al. Molybdenum sulfides-efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution[J]. Energy & Environmental Science, 2012, 5: 5577-5591.
[5]  Chhowalla M, Shin H S, Eda G. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature chemistry, 2013,5,(4): 263-275.
[6]  Burke L D, Hurley L M, Lodge V E. The effect of severe thermal pretreatment on the redox behaviour of gold in aqueous acid solution[J]. Journal of Solid State Electrochemistry, 2001, 5:250-260.
[7]  Bard A J, Fox M A. Artificial photosynthesis: solar splitting of water to hydrogen and oxygen[J]. Accounts of Chemical Research, 1995, 28(3): 141-145.
[8]  Dresselhaus M, Thomas I. Alternative energy technologies[J]. Nature, 2001, 414: 332-337.
[9]  Turner J A. Sustainable hydrogen production[J]. Science, 2004, 305(5686):972-974.
[10]  Lukowski M A, Daniel A S, Meng F, et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets[J]. Journal of the American Chemical Society, 2013, 135(28):10274-10277.
[11]  Zhao Y F, Xie X Q, Zhang J Q, et al. MoS2 Nanosheets Supported on 3D Graphene Aerogel as a Highly Efficient Catalyst for Hydrogen Evolution[J]. Chemistry-A European Journal, 2015, 21: 15908-15913.
[12]  McKone J R, Warren E L, Bierman M J, et al. Evaluation of Pt, Ni, and Ni-Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes[J]. Energy & Environmental Science, 2011, 4:3573-3583.
[13]  N?rskov J K, Bligaard T, Logadottir A, et al. Trends in the exchange current for hydrogen ev- olution[J]. Journal of The Electrochemical Society, 2005, 152(3):J23-J26.
[14]  N?rskov J K, Bligaard T, Rossmeisl J, et al. Towards the computational design of solid cata- lysts[J]. Nature chemistry, 2009, 1:37-46.
[15]  Li Y G, Wang H L, Xie L M, et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2011, 133(19):7296-7299.
[16]  Jaramillo T F, J?rgensen K P, Bonde J, et al. Identification of active edge sites for electro- chemical H2 evolution from MoS2 nanocatalysts [J]. science, 2007, 317(5834):100-102.
[17]  Hinnemann B, Moses P G, Bond J, et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution[J]. Journal of the American Chemical Society, 2005, 127(15):5308-5309.
[18]  Tremiliosi-Filho G, Dall’Antonia L H, Jerkiewicz G. Growth of surface oxides on gold electrodes under well-defined potential, time and temperature conditions[J.] Journal of Electro- analytical Chemistry, 2005, 578(1): 1-8.
[19]  Ulman A. Formation and structure of self- assembled monolayers[J]. Chemical reviews, 1996, 96(4): 1533-1554.
[20]  Chen Z B, Kibsgaard J, Jaramillo T. Nanostructuring MoS2 for photoelectrochemical water splitting[J]. Proc. SPIE, Solar Hydrogen and Nano technology V, 2010, 7770(77700K):1-7.
[21]  Jaramillo T F, Bonde J, Zhang J D, et al. Hydrogen evolution on supported incomplete cubane-type [Mo3S4]4+ electrocatalysts[J]. The Journal of Physical Chemistry C, 2008, 112(45): 17492-17498.
[22]  Brett C M?A, Kresak S, Hianik T, et al. Studies on Self-Assembled Alkanethiol Monolayers Formed at Applied Potential on Polycrystalline Gold Electrodes[J]. Electroanalysis, 2003, 15(5-6): 557-565.
[23]  Laibinis P E, Whitesides G M, Allara D L, et al. Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold[J]. Journal of the American Chemical Society, 1991, 113(19):7152-7167.
[24]  Walter M G, Warren M L, McKone J R, et al. Solar water splitting cells[J]. Chemical reviews, 2010, 110(11): 6446-6473.
[25]  Lewis N S, Nocera D G. Powering the planet: Chemical challenges in solar energy utilization[J]. Proceedings of the National Academy of Sciences, 2006, 103(43):15729-15735.
[26]  Trasatti S. Electrocatalysis of hydrogen evolution: progress in cathode activation[J]. Advances in electrochemical science and engineering, 1992, 2: 1-85.
[27]  Bonde J, Moses P G, Jaramillo T F, et al. Hydrogen evolution on nanoparticulate transition metal sulfides[J]. Faraday discussions, 2009, 140:219-231.
[28]  Lauritsen J V, Kibsgaard J, Helveg S, et al. Size-dependent structure of MoS2 Nanocrystals [J]. nature nanotechnology, 2007, 2(1): 53-58.
[29]  Huang J, Hemminger J C. Photooxidation of thiols in self-assembled monolayers on gold[J]. Journal of the American Chemical Society, 1993, 115(8): 3342-3343.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133