全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

不锈钢网阴极微生物燃料电池的产电性能研究
Electricity Generation of Microbial Fuel Cell Using Stainless Steel Mesh as Cathode

DOI: 10.13208/j.electrochem.150928

Keywords: 不锈钢网,微生物燃料电池,阴极,产电,稳定性,
stainless steel mesh
,microbial fuel cells,cathode,electricity generation,durability

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 构建了一个以曝气池污泥为阳极接种微生物、碳毡为阳极、无任何修饰的不锈钢网为阴极的双室微生物燃料电池. 通过输出电压、功率密度以及电化学阻抗等考察了阴极面积对电池产电性能的影响,并对电池的长期运行稳定性进行评价. 研究结果表明,不锈钢网作为微生物燃料电池的阴极性能稳定. 当不锈钢网面积为2 × 2 cm2时,最大输出电压达到0.411 V,功率密度为0.303 W?m-2,内阻841 Ω,极化内阻80 Ω. 增大阴极面积至2 × 4 cm2,最大输出电压能达到0.499 V,内阻减小至793 Ω. 不锈钢网价格便宜,具有长期运行稳定性,适宜做MFCs的阴极.
In the present work, a dual-chamber microbial fuel cell (MFC) was constructed with aeration tank sludge as an inoculum, carbon felt as an anode and stainless steel mesh without any modification as a cathode. The influence of the cathode size was investigated in terms of voltage output, power generation and electrochemical impedance. The long-term durability of the stainless steel mesh cathode was also evaluated. Results showed that the stainless steel mesh exhibited satisfactory long-term durability as MFC cathode. When the stainless steel mesh size was 2 × 2 cm2, the maximum output voltage, power density, the internal resistance and the polarization resistance were 0.411 V, 0.303 W?m-2, 841 Ω and 80 Ω, respectively. Increasing the cathode size to 2 × 4 cm2, the maximum output voltage could reach 0.499 V, and the internal resistance reduced to 793 Ω. These studies demonstrated that the stainless steel mesh was suitable for MFC cathode because of its durability and low price

References

[1]  Feng C H, Wan Q Y, Lv Z S, et al. One-step fabrication of membraneless microbial fuel cell cathode by electropolymerization of polypyrrole onto stainless steel mesh[J]. Biosensors and Bioelectronics, 2011, 26(9): 3953-3957.
[2]  Zhang J N(张金娜), Zhao Q L(赵庆良), You S J(尤世界), et al. Power generation in biocathode microbial fuel cell with different cathode materials[J]. Chemical Journal of Chinese Universities(高等学校化学学报), 2010, 31(1): 162-166.
[3]  He Z, Mansfeld F. Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies[J]. Energy & Environmental Science, 2009, 2(2): 215-219.
[4]  Zhao Y, Li P, Wang X B, et al. Influence of initial biofilm growth on electrochemical behavior in dual-chambered mediator microbial fuel cell[J]. Journal of Fuel Chemistry and Technology, 2012, 40(8): 967-972.
[5]  Xie X, Ye M, Hsu P C, et al. Microbial battery for efficient energy recovery[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(40): 15925-15930.
[6]  De Silva Muňoz L, Bergel A, Féron D et al. Hydrogen production by electrolysis of a phosphate solution on a stainless steel cathode[J]. International Journal of Hydrogen Energy, 2010, 35(16): 8561-8568.
[7]  Zhang Y P, Sun J, Hu Y Y, et al. Bio-cathode materials evaluation in microbial fuel cells: A comparison of graphite felt, carbon paper and stainless steel mesh materials[J]. International Journal of Hydrogen Energy, 2012, 37(22): 16935-16942.
[8]  You S J, Wang X H, Zhang J N, et al. Fabrication of stainless steel mesh gas diffusion electrode for power generation in microbial fuel cell[J]. Biosensors and Bioelectronics, 2011, 26(5): 2142-2146.
[9]  Wei L L, Han H L, Shen J Q. Effects of cathodic electron acceptors and potassium ferricyanide concentrations on the performance of microbial fuel cell[J]. International Journal of Hydrogen Energy, 2012, 37(17): 12980-12986.
[10]  Freguia S, Rabaey K, Yuan Z, et al. Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells[J]. Electrochimica Acta, 2007, 53(2): 598-603.
[11]  Logen B E, Call D, Cheng S, et al. Microbial electrolysis cells for high yield hydrogen gas production from organic matter[J]. Environmental Science & Technology, 2008, 42(23): 8630-8640.
[12]  Wei L L, Han H L, Shen J Q. Effects of cathodic electron acceptors and potassium ferricyanide concentrations on the performance of microbial fuel cell[J]. International Journal of Hydrogen Energy, 2012, 37(17): 12980-12986.
[13]  Wang C T, Chen W J, Huang R Y. Influence of growth curve phase on electricity performance of microbial fuel cell by Escherichia coli[J]. International Journal of Hydrogen Energy, 2010, 35(13): 7217-7223.
[14]  Morris J M, Jin S, Wang J Q, et al. Lead dioxide as an alternative catalyst to platinum in microbial fuel cells[J]. Electrochemistry Communications, 2007, 9(7): 1730-1734.
[15]  Lv Z S, Xie D H, Li F S, et al. Microbial fuel cell as a biocapacitor by using pseudo- capacitive anode materials[J]. Journal of Power Sources, 2014, 246: 642-649.
[16]  Cusick R D, Kiely P D, Logan B E. A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters[J]. International Journal of Hydrogen Energy, 2010, 35(17): 8855-8861.
[17]  Pinto R P, Srinivasan B, Guiot S R, et al. The effect of real-time external resistance optimization on microbial fuel cell performance[J]. Water Research, 2011, 45(4): 1571-1578.
[18]  Zhang Y P, Hu Y Y, Li S Z, et al. Manganese dioxide-coated carbon nanotubes as an improved cathodic catalyst for oxygen reduction in a microbial fuel cell[J]. Journal of Power Sources, 2011, 196(22): 9284-9289.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133