全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Pathophysiology of Cerebral Ischemia: Role of Oxidative/Nitrosative Stress

DOI: 10.4236/jbm.2019.73003, PP. 20-28

Keywords: Reactive Oxygen Species, Reactive Nitrogen Species, Cerebral Ischemia, Oxidative Stress

Full-Text   Cite this paper   Add to My Lib

Abstract:

Stroke is a devastating disease with a complex pathophysiology; it ranks second to ischemic heart disease as a cause of death and long-term disability. Tissue damage results from diverse mechanisms with central involvement of free radicals’ overproduction that results in oxidative stress and hence contributes to brain damage. Free radicals [Reactive oxygen species/Reactive nitrogen species] play central a role in the diverse normal physiological processes and as defense mechanisms against harmful substances. When the rate of their production exceeds the anti-oxidant capacity of the body, oxidative stress occurs. Oxidative stress is implicated in the pathogenesis of various diseases including hypertension, atherosclerosis, diabetes mellitus and cancer; they mediate damage to cell structures, lipid peroxidation, protein denaturation, nucleic acid and DNA damage.

References

[1]  Yesilot, N., Putaala, J., Bahar, S.Z. and Tatlisumak, T. (2017) Ethnic and Geographical Differences in Ischaemic Stroke among Young Adults. Current Vascular Pharmacology, 15, 416-429.
https://doi.org/10.2174/1570161115666170202161719
[2]  Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., et al. (2012) Global and Regional Mortality from 235 Causes of Death for 20 Age Groups in 1990 and 2010: A Systematic Analysis for the Global Burden of Disease Study 2010. The Lancet, 380, 2095-2128.
https://doi.org/10.1016/S0140-6736(12)61728-0
[3]  Deb, P., Sharma, S. and Hassan, K.M. (2010) Pathophysiologic Mechanisms of Acute Ischemic Stroke: An Overview with Emphasis on Therapeutic Significance beyond Thrombolysis. Pathophysiology, 17, 197-218.
https://doi.org/10.1016/j.pathophys.2009.12.001
[4]  WHO, WHF and WSF (2011) Global Atlas on Cardiovascular Disease Prevention and Control.
[5]  Banerjee, T.K., Roy, M.K. and Bhoi, K.K. (2005) Is Stroke Increasing in India—Preventive Measures That Need to Be Implemented. Journal of the Indian Medical Association, 103, 162-166.
[6]  Thrift, A.G., Cadilhac, D.A., Thayabaranathan, T., Howard, G., Howard, V.J., Rothwell, P.M., et al. (2014) Global Stroke Statistics. International Journal of Stroke, 9, 6-18.
https://doi.org/10.1111/ijs.12245
[7]  Gupta, R., Joshi, P., Mohan, V., Reddy, K.S. and Yusuf, S. (2008) Epidemiology and Causation of Coronary Heart Disease and Stroke in India. Heart, 94, 16-26.
https://doi.org/10.1136/hrt.2007.132951
[8]  Jickling, G.C., Liu, D., Stamova, B., Ander, B.P., Zhan, X., Lu, A., et al. (2014) Hemorrhagic Transformation after Ischemic Stroke in Animals and Humans. Journal of Cerebral Blood Flow & Metabolism, 34, 185-199.
https://doi.org/10.1038/jcbfm.2013.203
[9]  Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T.D., Mazur, M. and Telser, J. (2007) Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease. International Journal of Biochemistry and Cell Biology, 39, 44-84.
https://doi.org/10.1016/j.biocel.2006.07.001
[10]  Niizuma, K., Endo, H. and Chan, P.H. (2009) Oxidative Stress and Mitochondrial Dysfunction as Determinants of Ischemic Neuronal Death and Survival. Journal of Neurochemistry, 109, 133-138.
https://doi.org/10.1111/j.1471-4159.2009.05897.x
[11]  Awooda, H.A., Lutfi, M.F. and Saeed, A.M. (2015) Oxidative/Nitrosative Stress in Rats Subjected to Focal Cerebral Ischemia/Reperfusion. International Journal of Health Sciences, 9, 17-24.
[12]  Doyle, K.P., Simon, R.P. and Stenzel-Poore, M.P. (2008) Mechanisms of Ischemic Brain Damage. Neuropharmacology, 55, 310-318.
https://doi.org/10.1016/j.neuropharm.2008.01.005
[13]  Jarvis, C.R., Anderson, T.R. and Andrew, R.D. (2001) Anoxic Depolarization Mediates Acute Damage Independent of Glutamate in Neocortical Brain Slices. Cerebral Cortex, 11, 249-259.
https://doi.org/10.1093/cercor/11.3.249
[14]  Kanekar, S.G., Zacharia, T. and Roller, R. (2012) Imaging of Stroke: Part 2, Pathophysiology at the Molecular and Cellular Levels and Corresponding Imaging Changes. American Journal of Roentgenology, 198 63-74.
https://doi.org/10.2214/AJR.10.7312
[15]  Khoshnam, S.E., Winlow, W., Farzaneh, M., Farbood, Y. and Moghaddam, H.F. (2017) Pathogenic Mechanisms Following Ischemic Stroke. Neurological Sciences, 38, 1167-1186.
https://doi.org/10.1007/s10072-017-2938-1
[16]  Halliwell, B. (2007) Biochemistry of Oxidative Stress. Biochemical Society Transactions, 35, 1147-1150.
[17]  Giniatullin, A.R., Grishin, S.N., Sharifullina, E.R., Petrov, A.M., Zefirov, A.L. and Giniatullin, R.A. (2005) Reactive Oxygen Species Contribute to the Presynaptic Action of Extracellular ATP at the Frog Neuromuscular Junction. The Journal of Physiology, 565, 229-242.
https://doi.org/10.1113/jphysiol.2005.084186
[18]  Hu, D. (2006) Aging-Dependent Alterations in Synaptic Plasticity and Memory in Mice That Over-express Extracellular Superoxide Dismutase. Journal of Neuroscience, 26, 3933-3941.
https://doi.org/10.1523/JNEUROSCI.5566-05.2006
[19]  Stocker, R. (2004) Role of Oxidative Modifications in Atherosclerosis. Physiological Reviews, 84, 1381-1478.
https://doi.org/10.1152/physrev.00047.2003
[20]  Jin, R., Yang, G. and Li, G. (2010) Inflammatory Mechanisms in Ischemic Stroke: Role of Inflammatory Cells. Journal of Leukocyte Biology, 87, 779-789.
https://doi.org/10.1189/jlb.1109766
[21]  Chan, P.H. (2001) Reactive Oxygen Radicals in Signaling and Damage in the Ischemic Brain. Journal of Cerebral Blood Flow and Metabolism, 21, 2-14.
https://doi.org/10.1097/00004647-200101000-00002
[22]  Awooda, H., Lutfi, M.F., Sharara, G.M. and Saeed, M. (2013) Role of N-Nitro-L- Argi-nine-Methylester as Anti-Oxidant in Transient Cerebral Ischemia and Reperfusion in Rats. Experimental & Translational Stroke Medicine, 5, 1.
http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L368170738
[23]  Drummond, G.R., Selemidis, S., Griendling, K.K. and Sobey, C.G. (2011) Combating Oxidative Stress in Vascular Disease: NADPH Oxidases as Therapeutic Targets. Nature Reviews Drug Discovery, 10, 453-471.
https://doi.org/10.1038/nrd3403
[24]  Miller, A.A., Drummond, G.R. and Sobey, C.G. (2006) Novel Isoforms of NADPH-Oxidase in Cerebral Vascular Control. Pharmacology and Therapeutics, 111, 928-948.
https://doi.org/10.1016/j.pharmthera.2006.02.005
[25]  Lo, E.H., Dalkara, T. and Moskowitz, M.A. (2003) Mechanisms, Challenges and Opportunities in Stroke. Nature Reviews Neuroscience, 4, 399-415.
https://doi.org/10.1038/nrn1106
[26]  Misra, S., Hascall, V.C., Markwald, R.R., O’Brien, P.E. and Ghatak, S. (2018) Inflammation and Cancer. In: Turksen, K., Ed., Wound Healing: Stem Cells Repair and Restorations, Basic and Clinical Aspects, Wiley, Hoboken.
[27]  Awooda, H.A., Sharara, G.M., Soltani, N. and Saeed, A.M. (2014) Tumor Necrosis Factor-α and Nuclear Factor Kappa-β Expression in Rats Following Transient Focal Cerebral Ischemia Reperfusion. International Journal of Clinical and Experimental Neurology, 2, 40-46.
[28]  Dotan, Y., Lichtenberg, D. and Pinchuk, I. (2004) Lipid Peroxidation Cannot Be Used as a Universal Criterion of Oxidative Stress. Progress in Lipid Research, 43, 200-227.
[29]  Adibhatla, R.M. and Hatcher, J.F. (2010) Lipid Oxidation and Peroxidation in CNS Health and Disease: From Molecular Mechanisms to Therapeutic Opportunities. Antioxidants & Redox Signaling, 12, 125-169.
https://doi.org/10.1089/ars.2009.2668
[30]  Emerit, J., Edeas, M. and Bricaire, F. (2004) Neurodegenerative Diseases and Oxidative Stress. Biomedicine and Pharmacotherapy, 58, 39-46.
https://doi.org/10.1016/j.biopha.2003.11.004
[31]  Cherubini, A., Ruggiero, C., Polidori, M.C. and Mecocci, P. (2005) Potential Markers of Oxidative Stress in Stroke. Free Radical Biology and Medicine, 39, 841-852.
https://doi.org/10.1016/j.freeradbiomed.2005.06.025
[32]  Uchida, K. (2003) Histidine and Lysine as Targets of Oxidative Modification. Amino Acids, 25, 249-257.
https://doi.org/10.1007/s00726-003-0015-y
[33]  Liu, H., Uno, M., Kitazato, K.T., Suzue, A., Manabe, S., Yamasaki, H., et al. (2004) Peripheral Oxidative Biomarkers Constitute a Valuable Indicator of the Severity of Oxidative Brain Damage in Acute Cerebral Infarction. Brain Research, 1025, 43-50.
https://doi.org/10.1016/j.brainres.2004.07.071
[34]  Love, S., Barber, R. and Wilcock, G.K. (2000) Neuronal Death in Brain Infarcts in Man. Neuropathology and Applied Neurobiology, 26, 55-66.
https://doi.org/10.1046/j.1365-2990.2000.00218.x
[35]  Love, S. (2003) Apoptosis and Brain Ischaemia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 27, 267-282.
https://doi.org/10.1016/S0278-5846(03)00022-8
[36]  Valavanidis, A., Vlachogianni, T. and Fiotakis, C. (2009) 8-Hydroxy-2’-Deoxygu-anosine (8-OHdG): A Critical Biomarker of Oxidative Stress and Carcinogenesis. Journal of Environmental Science and Health Part C Environmental Carcinogenesis & Ecotoxicology Reviews, 27, 120-139.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133