全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Distribution and Accumulation of Major and Trace Elements in Gypsum Samples from Lignite Combustion Power Plant

DOI: 10.4236/ajac.2018.912044, PP. 602-621

Keywords: Trace and Major Elements,Wet Flue Gas Desulphurization Gypsum, Particle Size Fractions, Mercury and Selenium, Sample Preparation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Flue gas containing volatile elements, fine fly ash particulates not retained by particle control devices, and limestone are the most important sources of trace and major elements (TMEs) in wet flue gas desulphurization (WFGD) gypsum. In this study, samples of gypsum slurry were separated into fine and coarse fractions. Multi-elemental analysis of 45 elements in the different size fractions of gypsum, slurry waters and lignite were performed by k0-INAA (k0-instrumental neutron activation analyses). The study found that the volatile elements (Hg, Se and halogens) in the flue gas accumulate in the fine fractions of gypsum. Moreover, the concentrations of most TMEs are considerably higher in the fine fractions compared to the coarse fractions. The exceptions are Ca and Sr that primarily originate from the limestone. Variations of TMEs in the finer fractions are dependent on the presence of CaSO4·2H2O that is the main constituent of the coarse fraction. Consequently, the content of TMEs in the fine fraction is highly dependent on the efficiency of separating the fine fraction from the coarse fraction. Separation of the finer fraction, representing about 10% of the total gypsum, offers the possibility to remove effectively TMEs from WFGD slurry.

References

[1]  Nriagu, J.O. and Pacyna, J.M. (1988) Quantitative Assessment of Worldwide Contamination of Air, Water and Soils by Trace Metals. Nature, 333, 134-139.
https://doi.org/10.1038/333134a0
[2]  Nalbandian, H. (2012) Trace Element Emissions from Coal. IEA Clean Coal Centre Reports.
[3]  Querol, X., Fernández-Turiel, J. and López-Soler, A. (1995) Trace Elements in Coal and Their Behaviour during Combustion in a Large Power Station. Fuel, 74, 331-343.
https://doi.org/10.1016/0016-2361(95)93464-O
[4]  Querol, X., Juan, R., Lopez-Soler, A., Fernandez-Turiel, J.L. and Ruiz, C.R. (1996) Mobility of Trace Elements from Coal and Combustion Wastes. Fuel, 75, 821-838.
https://doi.org/10.1016/0016-2361(96)00027-0
[5]  Yudovich, Y. and Ketris, M.P. (2005) Mercury in Coal: A Review: Part 1. Geochemistry. International Journal of Coal Geology, 62, 107-134.
https://doi.org/10.1016/j.coal.2004.11.002
[6]  Mukherjee, A.B., Zevenhoven, R., Bhattacharya, P., Sajwan, K.S. and Kikuchi, R. (2008) Mercury Flow via Coal and Coal Utilization By-Products: A Global Perspective. Resources, Conservation and Recycling, 52, 571-591.
https://doi.org/10.1016/j.resconrec.2007.09.002
[7]  Vejahati, F., Xu, Z. and Gupta, R. (2010) Trace Elements in Coal: Associations with Coal and Minerals and Their Behavior during Coal Utilization—A Review. Fuel, 89, 904-911.
https://doi.org/10.1016/j.fuel.2009.06.013
[8]  Xu, M., Yan, R., Zheng, C., Qiao, Y., Han, J. and Sheng, C. (2004) Status of Trace Element Emission in a Coal Combustion Process: A Review. Fuel Processing Technology, 85, 215-237.
https://doi.org/10.1016/S0378-3820(03)00174-7
[9]  Clarke, L.B. and Sloss, L.L. (1992) Trace Elements from Coal Combustion and Gasification. IEACR/49, IEA Coal Research, London.
[10]  Klein, D.H., Andren, A.W., Carter, J.A., Emery, J.F., Feldman, C., Fulkerson, W., Lyon, W.S., Ogle, J.C. and Talmi, Y. (2009) Mercury-Selenium Compounds and Their Toxicological Significance: Toward a Molecular Understanding of the Mercury-Selenium Antagonism. Environmental Toxicology and Chemistry/SETAC, 28, 1567-1577.
https://doi.org/10.1897/08-375.1
[11]  Meij, R. (1994) Trace Element Behavior in Coal-Fired Power Plants. Fuel Processing Technology, 39, 199-217.
https://doi.org/10.1016/0378-3820(94)90180-5
[12]  Galbreath, K.C. and Zygarlicke, C.J. (2000) Mercury Transformations in Coal Combustion Flue Gas. Fuel Processing Technology, 65, 289-310.
https://doi.org/10.1016/S0378-3820(99)00102-2
[13]  Helble, J.J. and Sarofirm, A.F. (1993) Trace Elemetn Behaviour during Coal Combustion. Preprints of Papers—American Chemical Society, Division of Fuel Chemistry, 38, 257-264.
[14]  Meij, R. (1992) Analysis of Coal and Its By-Products. World Scientific Publishing Co., Singapore, 299-318.
[15]  Liu, Y.K., Zhuo, Y.Q., Zhu, Z.W. and Chen, C.H. (2013) Leaching Characteristics of Trace Elements in Desulphurization Gypsum from a Coal-Fired Power Plant. Cleaner Combustion and Sustainable World, 377-385.
https://doi.org/10.1007/978-3-642-30445-3_53
[16]  álvarez-Ayuso, E., Querol, X. and Tomás, A. (2006) Environmental Impact of a Coal Combustion-Desulphurisation Plant: Abatement Capacity of Desulphurisation Process and Environmental Characterisation of Combustion By-Products. Chemosphere, 65, 2009-2017.
https://doi.org/10.1016/j.chemosphere.2006.06.070
[17]  López-Antón, M.A., Díaz-Somoano, M., Ochoa-González, R. and Martínez-Tarazona, M.R. (2011) Distribution of Trace Elements from a Coal Burned in Two Different Spanish Power Stations. Industrial and Engineering Chemistry Research, 50, 12208-12216.
https://doi.org/10.1021/ie2018542
[18]  Bunt, J.R. and Waanders, F.B. (2010) Trace Element Behaviour in the Sasol-Lurgi Fixed-Bed Dry-Bottom Gasifier. Part 3 The Non-Volatile Elements: Ba, Co, Cr, Mn, and V. Fuel, 89, 537-548.
[19]  Galbreath, K.C., Toman, D.L., Zygarlicke, C.J. and Pavlish, J.H. (2000) Trace Element Partitioning and Transformations during Combustion of Bituminous and Subbituminous U.S. Coals in a 7-kW Combustion System. Energy & Fuels, 14, 1265-1279.
[20]  Otero-Rey, J.R., López-Vilariño, J.M., Moreda-Piñeiro, J., Alonso-Rodríguez, E., Muniategui-Lorenzo, S., López-Mahía, P. and Prada-Rodríguez, D. (2003) As, Hg, and Se Flue Gas Sampling in a Coal-Fired Power Plant and Their Fate during Coal Combustion. Environmental Science and Technology, 37, 5262-5267.
https://doi.org/10.1021/es020949g
[21]  Pavlish, J.H., Sondreal, E.A., Mann, M.D., Olson, E.S., Galbreath, K.C., Laudal, D.L. and Benson, S.A. (2003) Status Review of Mercury Control Options for Coal-Fired Power Plants. Fuel Processing Technology, 82, 89-165.
https://doi.org/10.1016/S0378-3820(03)00059-6
[22]  Ochoa-González, R., Díaz-Somoano, M. and Martínez-Tarazona, M.R. (2013) Influence of Limestone Characteristics on Mercury Re-Emission in WFGD Systems. Environmental Science & Technology, 47, 2974-2981.
https://doi.org/10.1021/es304090e
[23]  Stergaršek, A., Horvat, M., Frkal, P. and Stergaršek, J. (2010) Removal of Hg0 from Flue Gases in Wet FGD by Catalytic Oxidation with Air—An Experimental Study. Fuel, 89, 3167-3177.
https://doi.org/10.1016/j.fuel.2010.04.006
[24]  Stergaršek, A., Horvat, M., Frkal, P., Ribeiro Guevara, S. and Kocjancic, R. (2013) Removal of Hg0 in Wet FGD by Catalytic Oxidation with Air—A Contribution to the Development of a Process Chemical Model. Fuel, 107, 183-191.
https://doi.org/10.1016/j.fuel.2012.08.001
[25]  Liu, X., Wang, S., Zhang, L., Wu, Y., Duan, L. and Hao, J. (2013) Speciation of Mercury in FGD Gypsum and Mercury Emission during the Wallboard Production in China. Fuel, 111, 621-627.
[26]  Heebink, L.V. and Hassett, D.J. (2005) Mercury Release from FGD. Fuel, 84, 1372-1377.
https://doi.org/10.1016/j.fuel.2004.06.040
[27]  Kairies, C.L, Schroeder, K.T. and Cardone, C.R. (2006) Mercury in Gypsum Produced from Flue Gas Desulfurization. Fuel, 85, 2530-2536.
https://doi.org/10.1016/j.fuel.2006.04.027
[28]  Stergaršek, A., Horvat, M., Kotnik, J., Tratnik, J., Frkal, P., Kocman, D., Jacimovic, R., Fajon, V., Ponikvar, M., Hrastel, I., Lenart, J., Debeljak, B. and Cujez, M. (2008) The Role of Flue Gas Desulphurisation in Mercury Speciation and Distribution in a Lignite Burning Power Plant. Fuel, 87, 3504-3512.
https://doi.org/10.1016/j.fuel.2008.06.003
[29]  Beatty, W.L., Schroeder, K. and Beatty, C.L.K. (2012) Mineralogical Associations of Mercury in FGD Products. Energy & Fuels, 26, 3399-3406.
https://doi.org/10.1021/ef300033u
[30]  Córdoba, P., Font, O., Izquierdo, M., Querol, X., Tobías, A., López-Antón, M.A., Ochoa-Gonzalez, R., Díaz-Somoano, M., Martínez-Tarazona, M.R., Ayora, C, Leiva, C., Fernández, C. and Giménez, A. (2011) Enrichment of Inorganic Trace Pollutants in Re-Circulated Water Streams from a Wet Limestone Flue Gas Desulphurisation System in Two Coal Power Plants. Fuel Processing Technology, 92, 1764-1775.
https://doi.org/10.1016/j.fuproc.2011.04.025
[31]  Spears, D.A. and Martinez-Tarrazona, M.R. (2004) Trace Elements in Combustion Residues from a UK Power Station. Fuel, 83, 2265-2270.
https://doi.org/10.1016/j.fuel.2004.06.025
[32]  Li, Z., Clemens, A.H., Moore, T.A., Gong, D., Weaver, S.D. and Eby, N. (2005) Partitioning Behaviour of Trace Elements in a Stoker-Fired Combustion Unit: An Example Using Bituminous Coals from the Greymouth Coalfield (Cretaceous), New Zealand. International Journal of Coal Geology, 63, 98-116.
https://doi.org/10.1016/j.coal.2005.02.007
[33]  Tang, Q., Liu, G., Yan, Z. and Sun, R. (2012) Distribution and Fate of Environmentally Sensitive Elements (Arsenic, Mercury, Stibium and Selenium) in Coal-Fired Power Plants at Huainan, Anhui, China. Fuel, 95, 334-339.
https://doi.org/10.1016/j.fuel.2011.12.052
[34]  Bhangare, R.C., Ajmal, P.Y., Sahu, S.K., Pandit, G.G. and Puranik, V.D. (2011) Distribution of Trace Elements in Coal and Combustion Residues from Five Thermal Power Plants in India. International Journal of Coal Geology, 86, 349-356.
https://doi.org/10.1016/j.coal.2011.03.008
[35]  Tang, Q., Liu, G., Yan, Z. and Sun, R. (2013) Distribution of Trace Elements in Feed Coal and Combustion Residues from Two Coal-Fired Power Plants at Huainan, Anhui, China. Fuel, 107, 315-322.
https://doi.org/10.1016/j.fuel.2013.01.009
[36]  Li, J., Zhuang, X., Querol, X., Font, O., Moreno, N. and Zhou, J. (2012) Environmental Geochemistry of the Feed Coals and Their Combustion By-Products from Two Coal-Fired Power Plants in Xinjiang Province, Northwest China. Fuel, 95, 446-456.
https://doi.org/10.1016/j.fuel.2011.10.025
[37]  Swanson, S.M., Engle, M.A., Ruppert, L.F., Affolter, R.H. and Jones, K.B. (2013) Partitioning of Selected Trace Elements in Coal Combustion Products from Two Coal-Burning Power Plants in the United States. International Journal of Coal Geology, 113, 116-126.
https://doi.org/10.1016/j.coal.2012.08.010
[38]  Córdoba, P., Ochoa-Gonzalez, R., Font, O., Izquierdo, M., Querol, X., Leiva, C., López-Antón, M.A., Díaz-Somoano, M., Rosa Martinez-Tarazona, M., Fernandez, C. and Tomás, A. (2012) Partitioning of Trace Inorganic Elements in a Coal-Fired Power Plant Equipped with a Wet Flue Gas Desulphurisation System. Fuel, 92, 145-157.
https://doi.org/10.1016/j.fuel.2011.07.025
[39]  Esenlik, S., Karayigit, A.I., Bulut, Y., Querol, X., Alastuey, A. and Font, O. (2006) Element Behaviour during Combustion in Coal-Fired Orhaneli Power Plant, Bursa-Turkey. Geologica Acta, 4, 439-449.
[40]  Sun, M., Cheng, G., Lu, R., Tang, T., Baig S.A. and Xu, X. (2014) The Relationship between Speciation and Release Ability of Mercury in Flue Gas Desulfurization (FGD) Gypsum. Fuel, 125, 66-72.
https://doi.org/10.1016/j.fuel.2014.02.012
[41]  Hao, Y., Wu, S., Pan, Y., Li, Q., Zhou, J., Xu, Y. and Qian, G. (2016) Characterization and Leaching Toxicities of Mercury in Flue Gas Desulfurization Gypsum from Coal-Fired Power Plants in China. Fuel, 177, 157-163.
https://doi.org/10.1016/j.fuel.2016.02.091
[42]  Zhu, Z., Zhuo, Y., Fan, Y. and Wang, Z. (2016) Fate of Mercury in Flue Gas Desulfurization Gypsum Determined by Temperature Programmed Decomposition and Sequential Chemical Extraction. Journal of Environmental Sciences, 43, 169-176.
https://doi.org/10.1016/j.jes.2015.09.011
[43]  Córdoba, P., Castro, I., Maroto-Valer, M. and Querol, X. (2015) The Potential Leaching and Mobilization of Trace Elements from FGD-Gypsum of a Coal-Fired Power Plant under Water Re-Circulation Conditions. Journal of Environmental Sciences, 32, 72-80.
https://doi.org/10.1016/j.jes.2014.11.009
[44]  Jacimovic, R., De Corte, F., Kennedy, G., Vermaercke, P. and Revay, Z. (2014) The 2012 Recommended k0 Database. Journal of Radioanalytical and Nuclear Chemistry, 300, 589-592.
https://doi.org/10.1007/s10967-014-3085-2
[45]  Smodiš, B., Jacimovic, R., Medin, G. and Jovanovic, S. (1993) Instrumental Neutron Activation Analysis of Sediment Reference Materials Using the k0-Standardization Method. Journal of Radioanalytical and Nuclear Chemistry, 169, 177-185.
https://doi.org/10.1007/BF02046792
[46]  Jacimovic, R., Smodiš, B., Bucar, T. and Stegnar, P. (2003) k0-NAA Quality Assessment by Analysis of Different Certified Reference Materials Using the KAYZERO/SOLCOI Software. Journal of Radioanalytical and Nuclear Chemistry, 257, 659-663.
https://doi.org/10.1023/A:1026116916580
[47]  Xilei, L., Corte, F., Moens, L., Simonits, A. and Hoste, J. (1984) Computer-Assisted Reactor NAA of Geological and Other Reference Materials, Using the k0-Standardization Method: Evaluation of the Accuracy. Journal of Radioanalytical and Nuclear Chemistry, 81, 333-343.
https://doi.org/10.1007/BF02135386
[48]  Ochoa González, R., Díaz-Somoano, M., López Antón, M.A. and Martínez-Tarazona, M.R. (2012) Effect of Adding Aluminum Salts to Wet FGD Systems upon the Stabilization of Mercury. Fuel, 96, 568-571.
https://doi.org/10.1016/j.fuel.2012.01.054
[49]  Al-Abed, S.R., Jegadeesan, G., Scheckel, K.G. and Tolaymat, T. (2008) Speciation, Characterization, and Mobility of As, Se, and Hg in Flue Gas Desulphurization Residues. Environmental Science & Technology, 42, 1693-1698.
https://doi.org/10.1021/es702479n
[50]  Huggins, F.E., Senior, C.L., Chu, P., Ladwig, K. and Huffman, G.P. (2007) Selenium and Arsenic Speciation in Fly Ash from Full-Scale Coal-Burning Utility Plants. Environmental Science & Technology, 41, 3284-3289.
https://doi.org/10.1021/es062069y
[51]  Freyer, D. and Voigt, W. (2003) Crystallization and Phase Stability of CaSO4 and CaSO4-Based Salts. Monatshefte fur Chemie, 134, 693-719.
[52]  Krüger, R.R. and Abriel, W. (1991) Growth and Structure Refinement of CaSeO4·2H2O. Acta Crystallographica Section C, 47, 1958-1959.
[53]  Pedersen, B.F. and Semmingsen, D. (1982) Neutron Diffraction Refinement of the Structure of Gypsum CaSO4·2H2O. Acta Crystallographica Section B, 38, 1074-1077.
[54]  Fernández-González, A., Andara, A., Alía, J.M. and Prieto, M. (2006) Miscibility in the CaSO4·2H2O-CaSeO4·2H2O System: Implications for the Crystallisation and Dehydration Behaviour. Chemical Geology, 225, 256-265.
https://doi.org/10.1016/j.chemgeo.2005.08.019
[55]  Sedlar, M., Pavlin, M., Jacimovic, R., Stergaršek, A., Frkal, P. and Horvat, M. (2015) Temperature Fractionation (TF) of Hg Compounds in Gypsum from Wet Flue Gas Desulfurization System of the Coal Fired Thermal Power Plant (TPP). American Journal of Analytical Chemistry, 6, 939-956.
https://doi.org/10.4236/ajac.2015.612090
[56]  Sui, Z., Zhang, Y., Li, W., Orndorff, W., Cao, Y. and Pan, W.-P. (2015) Partitioning Effect of Mercury Content and Speciation in Gypsum Slurry as a Function of Time. Journal of Thermal Analysis and Calorimetry, 119, 1611-1618.
https://doi.org/10.1007/s10973-015-4403-9
[57]  Lee, J.-Y., Cho, K., Cheng, L., Keener, T.C., Jegadeesan, G. and Al-Abed, S.R. (2009) Investigation of a Mercury Speciation Technique for Flue Gas Desulfurization Materials. Journal of the Air & Waste Management Association, 59, 972-979.
https://doi.org/10.3155/1047-3289.59.8.972
[58]  Pavlin, M., Popovic, A., Jacimovic, R. and Horvat, M. (2018) Mercury Fractionation in Gypsum Using Temperature Desorption and Mass Spectrometric Detection. Open Chemistry, 16, 544-555.
https://doi.org/10.1515/chem-2018-0046
[59]  Khan, M.A.K. and Wang, F. (2009) Mercury-Selenium Compounds and Their Toxicological Significance: Toward a Molecular Understanding of the Mercury-Selenium Antagonism. Environmental Toxicology and Chemistry/SETAC, 28, 1567-1577.
https://doi.org/10.1897/08-375.1
[60]  Córdoba, P. (2017) Partitioning and Speciation of Selenium in Wet Limestone Flue Gas Desulphurisation Systems: A Review. Fuel, 202, 184-195.
https://doi.org/10.1016/j.fuel.2017.04.015
[61]  Shah, P., Strezov, V., Prince, K. and Nelson, P.F. (2008) Speciation of As, Cr, Se and Hg under Coal Fired Power Station Conditions. Fuel, 87, 1859-1869.
https://doi.org/10.1016/j.fuel.2007.12.001

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133