全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Creep-Fatigue Interaction Life Consumption of Industrial Gas Turbine Blades

DOI: 10.4236/mme.2018.84015, PP. 221-232

Keywords: Creep Damage, Fatigue Damage, Creep-Fatigue Interaction, Creep-Fatigue In-teraction Factor

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents the creep-fatigue interaction life consumption of industrial gas turbine blades using the LM2500+ engine operated at Pulrose Power station, Isle of Mann as a case study. The linear damage summation approach where creep damage and fatigue damage are combined was used for the creep-fatigue interaction life consumption of the target blades. The creep damage was modelled with the Larson-Miller parameter method while fatigue damage was assessed with the modified universal slopes method and the damage due to creep-fatigue interaction was obtained from the respective life fractions. Because of the difficulty in predicting the life of engine components accurately, relative life consumption analysis was carried out in the work using the concept of creep-fatigue interaction factor which is the ratio of the creep-fatigue interaction life obtained from any condition of engine operation to a reference creep-fatigue interaction life. The developed creep-fatigue interaction life consumption analysis procedure was applied to 8 most of real engine operation. It was observed that the contribution of creep to creep-fatigue interaction life consumption is greater than that of fatigue at all ambient temperatures. The fatigue contribution is greater at lower ambient temperatures as against higher ambient temperatures. For the case study, the overall equivalent creep-fatigue factor obtained was 1.5 which indicates safe engine operation compared to the reference condition. The developed life analysis algorithm could be applied to other engines and could serve as useful tool in engine life monitoring by engine operators.

References

[1]  Saturday, E.G., Li, Y.G., Ogiriki, E.A. and Newby, M.A. (2017) Creep-Life Usage Analysis and Tracking for Industrial Gas Turbines. Journal of Propulsion and Power, 33, 1305-1314.
https://doi.org/10.2514/1.B35912
[2]  Vaezi, M. and Soleymani, M. (2009) Creep Life Prediction of Inconel 738 Gas Turbine Blade. Journal of Applied Sciences, 9, 1950-1955.
https://doi.org/10.3923/jas.2009.1950.1955
[3]  Marahleh, G., Kheder, A.R.I. and Hamad, H.F. (2006) Creep-Life Prediction of Service-Exposed Turbine Blades. Materials Science, 42, 476-481.
https://doi.org/10.1007/s11003-006-0103-8
[4]  Saturday, E.G. and Isaiah, T. (2018) Low Cycle Fatigue Life Estimation and Tracking for Industrial Gas Turbine Blades Using Fatigue Factor Approach. Modern Mechanical Engineering, 8, 111-120.
https://doi.org/10.4236/mme.2018.82008
[5]  Harmon, D., Mcclure, M., Grelotti, R. and Hartford, E. (2010) Unified Low Cycle Fatigue for Gas Turbine Engine Rotor Alloys. Proceedings of 51st AIAA/ASME/ ASCE/AHS/ASC Structures, Structural Dynamics, and Materilas Conference, Orlando, 12-15 April 2010, 1-10.
[6]  Zhu, S., Huang, H., He, L., Liu, Y. and Wang, Z. (2012) A Generalized Energy-Based Fatigue—Creep Damage Parameter for Life Prediction of Turbine Disk Alloys. Engineering Fracture Mechanics, 90, 89-100.
https://doi.org/10.1016/j.engfracmech.2012.04.021
[7]  Pierce, C.J., Palazotto, A.N. and Rosenberger, A.H. (2010) Creep and Fatigue Interaction in the PWA1484 Single Crystal Nickel-Base Alloy. Materials Science and Engineering: A, 527, 7484-7489.
https://doi.org/10.1016/j.msea.2010.08.033
[8]  Andrews, B.J. and Potirniche, G.P. (2015) Constitutive Creep-Fatigue Crack Growth Methodology in Two Steels Using a Strip Yield Model. Engineering Fracture Mechanics, 140, 72-91.
https://doi.org/10.1016/j.engfracmech.2015.03.042
[9]  Narasimhachary, S.B. and Saxena, A. (2013) Crack Growth Behavior of 9Cr-1MO (P91) Steel under Creep-Fatigue Conditions. International Journal of Fatigue, 56, 106-113.
https://doi.org/10.1016/j.ijfatigue.2013.07.006
[10]  Bache, M.R., Johnston, R.E., Cook, T.S., Robinson, B.J. and Matlik, J.F. (2012) Crack Growth in the Creep-Fatigue Regime under Constrained Loading of thin Sheet Combustor Alloys. International Journal of Fatigue, 42, 82-87.
https://doi.org/10.1016/j.ijfatigue.2011.07.005
[11]  Hurley, P.J., Whittaker, M.T., Webster, P. and Evans, W.J. (2007) A Methodology for Predicting Creep/Fatigue Crack Growth Rates in Ti 6246. International Journal of Fatigue, 29, 1702-1710.
https://doi.org/10.1016/j.ijfatigue.2007.01.014
[12]  Shlyannikov, V.N., Tumanov, A.V. and Boychenko, N.V. (2015) A Creep Stress Intensity Factor Approach to Creep-Fatigue Crack Growth. Engineering Fracture Mechanics, 142, 201-219.
https://doi.org/10.1016/j.engfracmech.2015.05.056
[13]  Bouvard, J.L., Chaboche, J.L., Feyel, F. and Gallerneau, F. (2009) A Cohesive Zone Model for Fatigue and Creep—Fatigue Crack Growth in Single Crystal Superalloys. International Journal of Fatigue, 31, 868-879.
https://doi.org/10.1016/j.ijfatigue.2008.11.002
[14]  Chen, L., Jiang, J., Fan, Z., Chen, X. and Yang, T. (2007) A New Model for Life Prediction of Fatigue-Creep Interaction. International Journal of Fatigue, 29, 615-619.
https://doi.org/10.1016/j.ijfatigue.2006.07.009
[15]  Mao, H. and Mahadevan, S. (2000) Creep Fatigue Reliability of High Temperature Materials. 8th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability, University of Notre Dame, 4-26 July 2000, 1-6.
[16]  Hu, D. and Wang, R. (2009) Experimental Study on Creep-Fatigue Interaction Behavior of GH4133B Superalloy. Materials Science and Engineering: A, 515, 183-189.
[17]  Chen, L.J., Yao, G., Tian, J.F., Wang, Z.G. and Zhao, H.Y. (1998) Fatigue and Creep-Fatigue Behavior of a Nickel-Base Superalloy at 850°C. International Journal of Fatigue, 20, 543-548.
https://doi.org/10.1016/S0142-1123(98)00022-X
[18]  Fournier, A., Sauzay, B., Caes, M., Noblecourt, C., Mottot, M., Bougault, M., Rabeau, A. and Pineau, V. (2008) Creep-Fatigue-Oxidation Interactions in a 9Cr-1Mo Martensitic Steel. Part I: Effect of Tensile Holding Period on Fatigue Lifetime. International Journal of Fatigue, 30, 649-662.
https://doi.org/10.1016/j.ijfatigue.2007.05.007
[19]  Suresh, S. (2004) Fatigue of Materials. 2nd Edition, Cambridge University Press, New York.
[20]  Robinson, S.L. (1952) Effect of Temperature Variation on the Long Time Rupture Strength of Steels. Transactions of ASME, 74, 777-780.
[21]  Zhuang, W.Z. and Swansson, N.S. (1998) Thermo-Mechanical Fatigue Life Prediction: A Critical Review, DSTO-TR-0609. DSTO Aeronautical and Marine Research Laboratory, Melbourne Victoria.
[22]  Larson, F.R. and Miller, J. (1952) Time-Temperature Relationship for Rupture and Creep Stresses. Transactions of ASME, 74, 765-771.
[23]  Park, J. and Song, J. (1995) Detailed Evaluation of Methods for Estimation of Fatigue Properties. International Journal of Fatigue, 17, 365-373.
https://doi.org/10.1016/0142-1123(95)99737-U
[24]  Sapsard, M. (2000) Recommended Practices for Monitoring Gas Turbine Engine Life Consumption, RTO/NATO-NASA. Canada Communication Group Inc.
[25]  Zhang, R. (2001) Reliability-Based Reassessment of Corrosion Fatigue Life. Structural Safety, 23, 77-91.
https://doi.org/10.1016/S0167-4730(01)00002-9
[26]  Abdul Ghafir, M.F., Li, Y.G., Wang, L. and Zhang, W. (2011) Impact Analysis of Aero-Engine Performance Parameter Variation on Hot Section’s Creep Life Using Creep Factor Approach. AIAA, 16, 1-12.
[27]  Li, Y.G. and Singh, R. (2005) An Advanced Gas Turbine Gas Path Diagnostic System-PYTHIA. 17th International Symposium on Air Breathing Engines, Munich, 1-12.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133