The
notion of energetic complementarity can be a tool for energy resource managers
to prioritize energy generation projects based on renewable resources in both
interconnected and independent systems. As a tool in decision-making, it is
important to know better the influence of energetic complementarity on the
performance of hybrid systems especially with regard to energy shortages but
also in relation to other parameters. In recent years, hydro PV hybrid systems have become a growing
target of researchers and designers for the idea of installing photovoltaic
modules on the water surface of reservoirs. Energetic complementarity has three
components: time-complementarity, energy-amplitude and
amplitude-complementarity. This paper is dedicated to the study of the
influence of time-complementarity on the storage of energy through batteries in
hydro PV hybrid systems. The method applied is in the literature and suggests
the simulation of the system under study with the idealization of energy
availabilities, to remove the effects of climatic variations and the
characteristic intermittency of renewable resources. Simulations were performed
with the well-known software Homer. The results provided the variations of the
states of charge of the batteries as a function of different time-complementarities,
indicating as expected better performances associated to higher
time-complementarities.The results indicated that the cost of energy for a hybrid system with 28
batteries was equal to US$ 0.502 per kWh and that this cost increased as the
time complementarity between energy resources moved away from the situation
corresponding to full complementarity.The
simulations also showed that the maintenance of the zero failure condition
supplying the demands of the consumer loads requires that the load be reduced
to 52% if the complementarity is reduced from the full complementarity to zero
complementarity, with the cost of energy going from US$ 0.502 per kWh to US$
0.796 per kWh. The results also allow a better understanding of the influence
of time complementarity on the performance of hybrid systems.
References
[1]
Energy Research Company (2016) Brazilian Energy Balance, Final Report.
https://ben.epe.gov.br/downloads/Relatorio_Final_BEN_2016.pdf
[2]
Beluco, A., Souza, P.K. and Krenzinger, A. (2008) A Dimensionless Index Evaluating the Time Complementarity between Solar and Hydraulic Energies. Renewable Energy, 33, 2157-2165. https://doi.org/10.1016/j.renene.2008.01.019
[3]
Beluco, A., Souza, P.K. and Krenzinger, A. (2012) A Method to Evaluate the Effect of Complementarity in Time between Hydro and Solar Energy on the Performance of Hybrid Hydro PV Generating Plants. Renewable Energy, 45, 24-30.
https://doi.org/10.1016/j.renene.2012.01.096
[4]
Beluco, A. (2015) A Concept of Boundaries of Performance for Analysis of Hybrid Systems Based on Complementary Energy Resources. In: Prasad, R., Shivakumar, B.G. and Sharma, U.C., Org., Energy Science and Technology Series, Vol.12: Energy Management. Studium Press, LLC, Houston (TX), 459-483.
[5]
Gisbert, C.M.F., Gonzálvez, J.J.F., Santafé, M.R., Gisbert, P.S.F., Romero, F.J.S. and Soler, J.B.T. (2013) A New Photovoltaic Floating Cover System for Water Reservoirs. Renewable Energy, 60, 63-70. https://doi.org/10.1016/j.renene.2013.04.007
[6]
Santafé, M.R., Gsbert, P.S.F., Romero, F.J.S., Soler, J.B.T., Gonzálvez, J.J.F. and Gisbert, C.M.F. (2014) Implementation of a Photovoltaic Floating Cover for Irrigation Reservoirs. Journal of Cleaner Production, 66, 568-570.
https://doi.org/10.1016/j.jclepro.2013.11.006
[7]
Monforti, F., Huld, T., Bódis, K., Vitali, L., D’Isidoro, M. and Lacal-Arántegui, R. (2014) Assessing Complementarity of Wind and Solar Resources for Energy Production in Italy, a Monte Carlo Approach. Renewable Energy, 63, 576-586.
https://doi.org/10.1016/j.renene.2013.10.028
[8]
Widén, J. (2011) Correlations between Large Scale Solar and Wind Power in a Future Scenario for Sweden. IEEE Transactions on Sustainable Energy, 2, 177-184.
https://doi.org/10.1109/TSTE.2010.2101620
[9]
Cantão, M.P., Bessa, M.R., Bettega, R., Detzel, D.H.M. and Lima, J.M. (2017) Evaluation of Hydro Wind Complementarity in the Brazilian Territory bt Means of Correlation Maps. Renewable Energy, 101, 1215-1225.
https://doi.org/10.1016/j.renene.2016.10.012
[10]
Silva, A.R., Pimenta, F.M., Assireu, A.T. and Spyrides, M.H.C. (2016) Complementarity of Brazil’s Hydro and Offshore Wind Power. Renewable and Sustainable Energy Reviews, 56, 413-427. https://doi.org/10.1016/j.rser.2015.11.045
[11]
An, Y., Fang, W., Ming, B. and Huang, Q. (2015) Theories and Methodology of Complementary Hydro/Photovoltaic Operation: Applications to Short-Term Scheduling. Journal of Renewable and Sustainable Energy, 7, 063133/1-13.
https://doi.org/10.1063/1.4939056
[12]
Kougias, I., Szabo, S., Monforti-Ferrario, F., Huld, T. and Bodis, K. (2016) A Methodology for Optimization of the Complementarity between Small Hydropower Plants and Solar PV Systems. Renewable Energy, 87, 1023-1030.
https://doi.org/10.1016/j.renene.2015.09.073
[13]
Homer Energy (2009) Software HOMER, Version 2.68 Beta, The Micropower Optimization Model. https://www.homerenergy.com/
[14]
Lambert, T.W., Gilman, P. and Lilienthal, P.D. (2005) Micropower System Modeling with Homer. In: Farret, F.A. and Simões, M.G., Integration of Alternative Sources of Energy, John Wiley & Sons, Hoboken, 379-418.
[15]
Lilienthal, P.D., Lambert, T.W. and Gilman, P. (2004) Computer Modeling of Renewable Power Systems. In: Cleveland, C.J., Ed., Encyclopedia of Energy, Elsevier, Amsterdam, 633-647. https://doi.org/10.1016/B0-12-176480-X/00522-2
[16]
Vision Group (2017) Battery Model 6FM200D. http://www.vision-batt.com/
[17]
Beluco, A., Souza, P.K. and Krenzinger, A. (2013) Influence of Different Degrees of Complementarity of Solar and Hydro Energy Availability on the Performance of Hybrid Hydro PV Generating Plants. Energy and Power Engineering, 5, 332-342.
https://doi.org/10.4236/epe.2013.54034
[18]
Beluco, A., Souza, P.K., Livi, F.P. and Caux, J. (2015) Energetic Complementarity with Hydropower and the Possibility of Storage in Batteries and Water Reservoir. In: Sorensen, B., Eds., Solar Energy Storage, Academic Press, Cambridge, 155-188.
https://doi.org/10.1016/B978-0-12-409540-3.00007-4