The current paper is focused on the facies, sedimentary environment and depositional cycles study of the Middle-Late Permian sediments in the South Fars Zireh Gas Field, the subsurface section of well ZH-A. Four hundred thin-sections obtained from cores and cuttings were examined under standard petrographic microscope. For this study research, Corel Draw X6, Corel Photo-Paint, DN2 Microscopy Image Processing System, Scope Photo, Autodesk Map, Geocalc and Auto Cad 2014 were utilized. Based on microfacies analysis and significant founa and flora, fourteen major facies in four facies associations comprising tidal flat (A), lagoon (B), shoal (C) and open marine (D) identified in the well ZH-A. This formation was deposited in inner part of a homoclinal ramp. Based on depositional cycles, seven main 3rd order sequences were revealed in the Well ZH-A. The ooid grainstone facies with interparticle and oomoldic porosity has high reservoir potential. The diagenetic processes like dolomitization and dissolution have significant effect in the reservoir quality. Based on research results, a major framework can be weaved and used to correlate reservoir layering.
References
[1]
Edgell, H.S. (1977) The Permian System as an Oil and Gas Reservoir in Iran, Iraq and Arabia. Proceedings of the Second Iranian Geological Symposium, 161-201.
[2]
Dunham, R.J. (1962) Classification of Carbonate Rocks According to Depositional Texture. In: Ham, W.E., Ed., Classification of Carbonate Rocks, a Symposium, AAPG Mem., No. 1, 108-121.
[3]
Flügel, E. (2010) Microfacies of Carbonate Rocks, Analysis, Interpretation and Application. Springer-Verlag, Berlin, 996 p.
[4]
Insalaco, E., Virgone, A., Courme, B., Gaillot, J., Kamali, M., Moallemi, A., Lotfpour, M. and Monibi, S. (2006) Upper Dalan Member and Kangan Formation between the Zagros Mountains and Offshore Fars, Iran: Depositional System, Biostratigraphy and Stratigraphic Architecture. GeoArabia, 11, 74-176.
[5]
Lasemi, Y., Jahani, D., Amin-Rasouli, H. and Lasemi, Z. (2012) Ancient Carbonate Tidalites. In: Davis, R.A. and Dalrymple, R.W., Eds., Principle of Tidal Sedimentology, Springer, 576-609.
[6]
Fotovat, M., Hosseini, G.H. and Rahimpour-Bonab, H. (2012) Sedimentary Environment of Upper Dalan Member in Qatar-Fars Arch and Its Eastern Margin: South Pars and Salman Fields. Stratigraphy and Sedimentology Researches, 42, 115-136. (In Persian)
[7]
Catuneanu, O., Galloway, W.E., Kendall, C.G.S.T.C., Miall, A.D., Posamentier, H.W., Strasser, A. and Tucker, M.E. (2011) Sequence Stratigraphy: Methodology and Nomenclature. Newsletters on Stratigraphy, 44, 173-245.
https://doi.org/10.1127/0078-0421/2011/0011
[8]
Snedden, J.W. and Liu, C. (2010) A Compilation of Phanerozoic Sea-Level Change, Coastal Onlaps and Recommended Sequence Designation. Search and Discovery Article 40594, AAPG.
[9]
Sharland, P.R., Archer, R., Casey, D.M., Davies, R.B., Hall, S.H., Heward, A.P., Hourbury, A.D. and Simmons, M.D. (2001) Arabian Plate Sequence Stratigraphy. GeoArabia Special Publication 2, Gulf PetroLink, 371 p.
[10]
Sharland, P.R., Casey, D.M., Davies, R.B., Simmons, M.D. and Sutcliffe, O.E. (2004) Arabian Plate Sequence Stratigraphy. GeoArabia, 9, 199-214.
[11]
Gradstein, F.M., Ogg, J.C. and Smith, A.G. (2004) A Geological Time Scale. Cambridge University Press, New York.
[12]
Simmons, M.D., Sharland, P.R., Casey, D.M., Davies, R.B. and Sutcliffe, O.E. (2007) Arabian Plate Sequence Stratigraphy: Potential Implications for Global Chronostratigraphy. GeoArabia, 12, 101-130.
[13]
Warren, J.K. (2006) Evaporites: Sediments, Resources and Hydrocarbons. Springer Verlag, New York, 1041 p. https://doi.org/10.1007/3-540-32344-9
[14]
Teymourzadeh, H., Vaziri, S.H., Jahani, D., Kohansal Ghadimvand, N. and Yahyaei, A. (2014) Exploration Characteristics and Lithostratigraphy of the Kangan and Upper Dalan Formations in Lavan Gas Field, Northen Persian Gulf. Academic Research Part A, 6, 311-320.
[15]
Zamannejad, A., Jahani, D., Lotfpour, M. and Movahed, B. (2013) Mixed Evaporite/Carbonate Characteristics of the Triassic Kangan Formation, Offshore Area, Persian Gulf. Revista Mexicana de Ciencias Geológicas, 30, 540-551.
[16]
Strasser, A. (1984) Black-Pebble Occurrence and Genesis in Holocene Carbonate Sediments (Florida Keys, Bahamas and Tunisia). Journal of Sedimentary Petrology, 54, 1097-1109.
https://doi.org/10.1306/212f856c-2b24-11d7-8648000102c1865d
Steinhoff, I. and Strohmenger, C. (1996) Zechstein 2 Carbonate Platform Subfacies and Grain-Type Distribution (Upper Permian, Northwest Germany). Facies, 35, 105-132.
https://doi.org/10.1007/BF02536959
[19]
Madi, A., Savard, M.M., Bourque, P.A. and Chi, G. (2000) Hydrocarbon Potential of the Mississippian Carbonate Platform, Bechar Basin. Algerian Sahara, 84, 266-287.
[20]
Madi, A., Bourque, P.A. and Mamet, B.I. (1996) Depth-Related Ecological Zonation of a Carboniferous Carbonate Ramp: Upper Viséan of Béchar Basin, Western Algeria. Facies, 35, 59-80. https://doi.org/10.1007/BF02536957
[21]
Rezavand, N., Jahani, D. and Asilian, H. (2016) Facies, Sedimentary Environment and Sequence Stratigraphy of Dalan Formation in South Fars, Iran. Open Journal of Geology, 6, 944-962. https://doi.org/10.4236/ojg.2016.68071
[22]
Angiolini, L., Balini, M., Garzanti, E., Nicora, A., Tintori, A., Crasquin, S. and Muttoni, G. (2003) Permian Climatic and Paleogeographic Changes in Northern Gondwana: The Khuff Formation of Interior Oman. Palaeogeography, Palaeoclimatology, Palaeoecology, 191, 269-300. https://doi.org/10.1016/S0031-0182(02)00668-5