Linear fractional map type (LFMT) nonlinear QCA (NLQCA), one of the simplest reversible NLQCA is studied analytically as well as numerically. Linear advection equation or Time Dependent Schrödinger Equation (TDSE) is obtained from the continuum limit of linear QCA. Similarly it is found that some nonlinear advection-diffusion equations including inviscid Burgers equation and porous-medium equation are obtained from LFMT NLQCA.
References
[1]
Wiesner, K. (2009) Quantum Cellular Automata. Encyclopedia of Complexity and Systems Science, Springer, New York, 7154-7164. https://doi.org/10.1007/978-0-387-30440-3_426
[2]
Grössing, G. and Zeilinger, A. (1988) Quantum Cellular Automata. Complex Systems, 2, 197-208.
[3]
Meyer, D.A. (1996) From Quantum Cellular Automata to Quantum Lattice Gases. Journal of Statistical Physics, 85, 551–574. https://doi.org/10.1007/BF02199356
[4]
Meyer, D.A. (1997) Quantum Mechanics of Lattice Gas Automation: One Particle Plane Waves and Potential. Physical Review E, 55, 5261-5269. https://doi.org/10.1103/PhysRevE.55.5261
[5]
Meyer, D.A. (1998) Quantum Mechanics of Lattice Gas Automata: Boundary Conditions and Other Inhomogeneities. Journal of Physics A, 31, 2321-2340. https://doi.org/10.1088/0305-4470/31/10/009
[6]
Meyer, D.A. (1997) Quantum Lattice Gasses and Their Invariants. International Journal of Modern Physics C, 8, 717-735. https://doi.org/10.1142/S0129183197000618
[7]
Boghosian, B.M. and TaylorI, V.W. (1998) Quantum Lattice-Gas Model for the Many-Par-ticle Schrödinger Equation in D Dimensions. Physical Review E, 57, 54-66. https://doi.org/10.1103/PhysRevE.57.54
[8]
Boghosian, B.M. and TaylorI, V.W. (1998) Simulating Quantum Mechanics on a Quantum Computer. Physica D, 120, 30-42. https://doi.org/10.1016/S0167-2789(98)00042-6
[9]
Schumacher, B. and Werner, R. (2004) Reversible Quantum Cellular Automata.
[10]
Arrighi, P., Nesme, V. and Werner, R. (2011) Unitarity Plus Causality Implies Localizability. Journal of Computer and System Sciences, 77, 372-378. https://doi.org/10.1016/j.jcss.2010.05.004
[11]
Arrighi, P. and Grattage, J. (2012) Partitioned Quantum Cellular Automata Are Intrinsically Universal. Journal of Natural Products, 11, 13-22. https://doi.org/10.1007/s11047-011-9277-6
[12]
Venegas-Andraca, S.E. (2012) Quantum Walks: A Comprehensive Review. Quantum Information Processing, 11, 1015-1106. https://doi.org/10.1007/s11128-012-0432-5
[13]
Succi, S. and Benzi, R. (1993) Lattice Boltzmann Equation for Quantum Mechanics. Physica D: Nonlinear Phenomena, 69, 327-332. https://doi.org/10.1016/0167-2789(93)90096-J
[14]
Succi, S., Fillion-Gourdeau, F. and Palpacelli, S. (2015) Quantum Lattice Boltzmann Is a Quantum Walk. EPJ Quantum Technology, 2, 12. https://doi.org/10.1140/epjqt/s40507-015-0025-1
[15]
Hamada, M., Konno, M. and Segawa, E. (2005) Relation between Coined Quantum Walks and Quantum Cellular Automata. RIMS Kokyuroku, 1422, 1-11.
[16]
Shakeel, A. and Love, P.J. (2013) When Is a Quantum Cellular Automaton (QCA) a Quantum Lattice Gas Automaton (QLGA)? Journal of Mathematical Physics, 54, Article ID: 092203. https://doi.org/10.1063/1.4821640
[17]
Ribeiro, P., Milman, P. and Mosseri, R. (2004) Aperiodic Quantum Random Walks. Physical Review Letters, 93, Article ID: 190503. https://doi.org/10.1103/physrevlett.93.190503
[18]
Di Molfetta, G., Honter, L., Luo, B.B., Wada, T. and Shikano, Y. (2015) Massless Dirac equation from Fibonacci Discrete-Time Quantum Walk. Quantum Studies: Mathematics and Foundations, 2, 243-252. https://doi.org/10.1007/s40509-015-0038-6
[19]
Meyer, D.A. (1996) Unitarity in One Dimensional Nonlinear Quantum Cellular Automata.
[20]
Navarrete-Benlloch, C., Pérez, A. and Roldán, E. (2007) Nonlinear Optical Galton Board. Physical Review A, 75, Article ID: 062333. https://doi.org/10.1103/physreva.75.062333
[21]
Shikano, Y., Wada, T. and Horikawa, J. (2014) Discrete-Time Quantum Walk with Feed-Forward Quantum Coin. Scientific Reports, 4, 4427. https://doi.org/10.1038/srep04427
[22]
Hamada, S., Kawahata, M. and Sekino, H. (2013) Solution of the Time Dependent Schrödinger Equation and the Advection Equation via Quantum Walk with Variable Parameters. Journal of Quantum Information Science, 3, 107-119. https://doi.org/10.4236/jqis.2013.33015
[23]
Vazquez, J.L. (2006) The Porous Medium Equation, Mathematical Theory. Oxford University Press, Oxford. https://doi.org/10.1093/acprof:oso/9780198569039.001.0001
[24]
Hlavaty, L., Steinberg, S. and Wolf, K.B. (1984) Riccati Equations and Lie Series. Journal of Mathematical Analysis and Applications, 104, 246-263. https://doi.org/10.1016/0022-247X(84)90046-5