全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Hydrodynamic Analogy to Special Relativity

DOI: 10.4236/wjm.2016.610029, PP. 406-418

Keywords: Hydrodynamic Mass, Water Waves, Special Relativity, Velocity Dependence of Mass, Mass-Energy Equivalence

Full-Text   Cite this paper   Add to My Lib

Abstract:

By studying of a slender body moving in a fluid wave-medium, e.g., in air or in shallow water, it was found that the hydrodynamic momentum mass and the total energy of the fluid field can be expressed in forms of \"\" and E=mc2, where v is the body moving speed, c is the wave speed and is the hydrodynamic mass at the zero speed. Thus a hydrodynamic analogy to the relativistic particle motion in vacuum can be traced. The velocity dependence of mass and the mass-energy equivalence are universal for any wave medium, which should not be regarded as a consequence of relative Lorentz time-space, but one of the existence of wave in the medium. Its further inference leads to an even more significant physical picture. If the mass particle moves in an unbounded space at a supercritical speed, i.e. \"\", waves are generated and radiated from it, like the Mach waves by the supersonic plane, and the particle itself experiences a resistance as reaction from the wave radiation. By an extension of this analogy, it can be interred from a hydrodynamic superconductive phenomenon that particles or waves can move possibly at a superluminal speed without experiencing any resistance through a tunnel (a bounded space) under certain conditions. Therefore the speed of light is not the limit of our physical world and superluminal phenomena are possible.

References

[1]  Michell, J.H. (1898) The Wave-Resistance of a Ship. Philosophical Magazine, 45, 106-123.
http://dx.doi.org/10.1080/14786449808621111
[2]  Tuck, E.O. (1966) Shallow Water Flows Past Slender Bodies. Journal of Fluid Mechanics, 26, 81-95.
http://dx.doi.org/10.1017/S0022112066001101
[3]  Einstein, A. (1905) Zur Elektrodynamik bewegter Körper. Annalen der Physik, 17, 891-921.
http://dx.doi.org/10.1002/andp.19053221004
[4]  Einstein, A. (1905) Ist die Trägheit eines örpers von seinem Energieinhalt abhängig? Annalen der Physik, 18, 639-641.
http://dx.doi.org/10.1002/andp.19053231314
[5]  Milne-Thomson, L.M. (1968) Theoretical Hydrodynamics. 5th Edition, Dover Publications, New York.
http://dx.doi.org/10.1007/978-1-349-00517-8
[6]  Pais, A. (1982) “Subtle Is the Lord...” the Science and the Life of Albert Einstein. Oxford Univ. Press, Oxford.
[7]  Thomson, J.J. (1881) On the Electric and Magnetic Effects Produced by the Motion of Electrified Bodies. Philosophical Magazine, 11, 229-249.
http://dx.doi.org/10.1080/14786448108627008
[8]  Yih, C.-S. (1995) Kinetic-Energy Mass, Momentum Mass, and Drift Mass in Steady Irrotational Subsonic Flows. Journal of Fluid Mechanics, 297, 29-36.
http://dx.doi.org/10.1017/S0022112095002989
[9]  Yih, C.-S. (1997) The Role of Drift mass in the Kinetic Energy and Momentum of Periodic Water Waves and Sound Waves. Journal of Fluid Mechanics, 331, 429-438.
http://dx.doi.org/10.1017/S0022112096003539
[10]  Shupe, M.A. (1985) The Lorentz-Invariant Vacuum Medium. American Journal of Physics, 53, 122-127.
http://dx.doi.org/10.1119/1.14094
[11]  Jackson, J.D. (1975) Classical Electrodynamics. 2nd Edition, John Wiley & Sons, New York.
[12]  Carusotto, I. and Rousseaux, G. (2013) The Cerenkov Effect Revisited: From Swimming Ducks to Zero Modes in Gravitational Analogues. In: Analogue Gravity Phenomenology. Springer International Publishing, Berlin, 109-144.
[13]  Chen, X.-N. and Sharma, S.D. (1997) Zero Wave Resistance for Ships Moving in Shallow Channels at Supercritical Speeds. Journal of Fluid Mechanics, 335, 305-321.
http://dx.doi.org/10.1017/S0022112096004533
[14]  Chen, X.-N., Sharma, S.D. and Stuntz, N. (2003) Zero Wave Resistance for Ships Moving in Shallow Channels at Supercritical Speeds. Part 2. Improved Theory and Model Experiment. Journal of Fluid Mechanics, 478, 111-124.
http://dx.doi.org/10.1017/S0022112002003178
[15]  Enders, A. and Nimtz, G. (1992) On Superluminal Barrier Traversal. J. Phys. I, 2, 1693-1698.
http://dx.doi.org/10.1051/jp1:1992236
[16]  Soomere, T. (2009) Solitons Interactions. In: Meyers, R.A., Ed., Encyclopedia of Complexity and Systems Science, Springer, New York, 8479-8504.
http://dx.doi.org/10.1007/978-0-387-30440-3_507
[17]  Miles, J.W. (1977) Resonantly Interacting Solitary Waves. Journal of Fluid Mechanics, 79, 171-179.
http://dx.doi.org/10.1017/S0022112077000093
[18]  Melville, W.K. (1980) On the Mach Reflection of Solitary Waves. Journal of Fluid Mechanics, 98, 285-297.
http://dx.doi.org/10.1017/S0022112080000158
[19]  Betz, A. (1932) Singularitätenverfahren zur Ermittlung der Kräfte und Momente auf Körper in Potentialströmungen. Achieve of Applied Mechanics, 3, 454-462.
http://dx.doi.org/10.1007/bf02079821

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133