全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Is the Two-Color Method Superior to Empirical Equations in Refractive Index Compensation?

DOI: 10.4236/opj.2016.68B002, PP. 8-13

Keywords: Two-Color Method, Length Measurement, Sensitivity Coefficient, Uncertainty, Empirical Equations

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Edlén empirical equations and the two-color method are the commonly used approaches to converting a length measured in air to the corresponding length in vacuum to eliminate the influence of the refractive index of air. However, it is not well known whether the two-color method is superior to empirical equations in refractive index compensation. We investigated the uncertainties of these approaches via numerical calculations of their sensitivity coefficients of environmental parameters. On the basis of a comparison of their uncertainties, we found that in a 0% humidity environment, the two-color method had potential to provide greater measurement accuracy than the empirical equations.

References

[1]  Ciddor, P.E. (1996) Refractive Index of Air: New Equations for the Visible and Near Infrared. Appl. Opt, 35, 1566-1573. http://dx.doi.org/10.1364/ao.35.001566
[2]  Birch, K.P. and Downs, M.J. (1993) An Updated Edlén Equation for the Refractive Index of Air. Metrologia, 30, 155. http://dx.doi.org/10.1088/0026-1394/30/3/004
[3]  Bengt, E. (1966) The Refractive Index of Air. Metrologia, 2, 71. http://dx.doi.org/10.1088/0026-1394/2/2/002
[4]  Stone, J.A. and Zimmerman, J.H. Refractive Index of Air Calculator. http://emtoolbox.nist.gov/Wavelength/Edlen.asp
[5]  Bender, P.L. and Owens, J.C. (1965) Correction of Optical Distance Mea-surements for the Fluctuating Atmospheric Index of Refraction. J. Geophys. Res, 70, 2461-2462. http://dx.doi.org/10.1029/JZ070i010p02461
[6]  Coddington, I., Swann, W.C., Nenadovic, L. and Newbury, N.R. (2009) Rapid and Precise Absolute Distance Measurements at Long Range. Nat Photon, 3, 351-356. http://dx.doi.org/10.1038/nphoton.2009.94
[7]  Lee, J., Kim, Y.-J., Lee, K., Lee, S. and Kim, S.-W. (2010) Time-of-Flight Measurement with Femtosecond Light Pulses. Nat Photon, 4, 716-720. http://dx.doi.org/10.1038/nphoton.2010.175
[8]  Zhang, J., Lu, Z.H. Menegozzi, B. and Wang, L.J. (2006) Application of Frequency Combs in the Measurement of the Refractive Index of Air. Rev. sci. instrum, 77, 083104-083105. http://dx.doi.org/10.1063/1.2239036
[9]  Zhang, J., Lu, Z.H. and Wang, L.J. (2007) Precision Measurement of the Refractive Index of Carbon Dioxide with a Frequency Comb. Opt. Lett, 32, 3212-3214. http://dx.doi.org/10.1364/OL.32.003212
[10]  Minoshima, K. and Matsumoto, H. (2000) High-Accuracy Measurement of 240-m Distance in an Optical Tunnel by use of a Compact Femtosecond Laser. Appl. Opt, 39, 5512-5517. http://dx.doi.org/10.1364/AO.39.005512
[11]  Meiners-Hagen, K. and Abou-Zeid, A. (2008) Refractive Index Determination in Length Measurement by two-Colour Interferometry. Meas. Sci. Technol, 19, 084004. http://dx.doi.org/10.1088/0957-0233/19/8/084004
[12]  Kang, H.J., Chun, B.J., Jang, Y.-S., Kim, Y.-J. and Kim, S.-W. (2015) Real-Time Compensation of the Refractive Index of Air in Distance Measurement. Opt. Express, 23, 26377-26385. http://dx.doi.org/10.1364/OE.23.026377
[13]  Wu, G., Arai, K., Takahashi, M., Inaba, H. and Minoshima, K. (2013) High-Accuracy Correction of Air Refractive Index by Using Two-Color Heterodyne Interferometry of Optical Frequency Combs. Meas. Sci. Technol, 24, 015203. http://dx.doi.org/10.1088/0957-0233/24/1/015203
[14]  Coleman, H.W. and Steele, W.G. (1999) Experimentation and Uncertainty Analysis for Engineers, A Wiley Interscience publication. Wiley.
[15]  Walter, B. Maurice, G.C. and Peter, M.H. (2006) Evolution of the “Guide to the Expression of Uncertainty in Measurement”. Metrologia, 43, S161. http://dx.doi.org/10.1088/0026-1394/43/4/S01
[16]  Kevin, H. (2013) Handbook of Optical Dimensional Metrology, Series in Optics and Optoelectronics. Taylor & Francis.
[17]  Ellis, J.D. (2014) Field Guide to Displacement Measuring Interferometry, The Field Guide Series. SPIE, Bellingham. http://dx.doi.org/10.1117/3.1002328
[18]  Wu, G., Takahashi, M., Arai, K., Inaba, H. and Minoshima, K. (2013) Extremely High-Accuracy Correction of Air Refractive Index Using Two-Colour Optical Frequency Combs. Sci. Rep, 3.
[19]  Wei, D. and Aketagawa, M. (2015) Uncertainty in Length Conversion due to Change of Sensitivity Coefficients of Refractive Index. Opt. Commun, 345, 67-70. http://dx.doi.org/10.1016/j.optcom.2015.01.070
[20]  Ishida, A. (1989) Two-Wavelength Displacement-Measuring Interferometer Using Second-Harmonic Light to Eliminate Air-Turbulence-Induced Errors. Jpn. J. Appl. Phys, 28, L473. http://dx.doi.org/10.1143/jjap.28.l473
[21]  Matsumoto, H. and Honda, T. (1992) High-Accuracy Length-Measuring Interferometer Using the two-Colour Method of Compensating for the Refractive Index of Air. Meas. Sci. Technol, 3, 1084. http://dx.doi.org/10.1088/0957-0233/3/11/011
[22]  Matsumoto, H., Zhu, Y., Iwasaki, S. and Oishi, T. (1992) Measurement of the Changes in Air Refractive Index and Distance by Means of a Two-Color Interferometer. Appl. Opt, 31, 4522-4526. http://dx.doi.org/10.1364/AO.31.004522
[23]  Golubev A.N. and Chekhovsky, A.M. (1994) Three-Color Optical Range Finding. Appl. Opt, 33, 7511-7517. http://dx.doi.org/10.1364/AO.33.007511
[24]  Minoshima, K., Arai, K. and Inaba, H. (2011) High-Accuracy Self-Correction of Re-fractive Index of Air Using Two-Color Interferometry of Optical Frequency Combs. Opt. Express, 19, 26095-26105. http://dx.doi.org/10.1364/OE.19.026095

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133