全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Geddanken Experiment for Quark Star Idea, Quantum Wavelength Limit, Minimum Time, and Early Universe Temperature, from First Principles

DOI: 10.4236/jhepgc.2016.24042, PP. 478-485

Keywords: Quark Star Idea, Quantum Wavelength Limit, Early Universe Temperature

Full-Text   Cite this paper   Add to My Lib

Abstract:

We initially look at a non singular universe representation as given by Rovelli and Vidotto, in terms of a quantum bounce, via minimum mass quark stars, as a start of how to estimate of entropy and also of the number of operations of an expanding universe. The bench mark used is, to after considering a quark star, to look at the mass of a universe, estimated, and from there, we can obtain the entropy if we look at the Schwartzshield radii of a universe, and then the radii of the universe about 380,000 years after the big bang. In the latter, we show how to get the number of operations as akin to the reasoning used by Seth Lloyd, in 2001, and also from there close with a few comments as to the “naturalness” of heavy Gravity from this formulation of entropy, which is based upon a start of considering what is a Planck star, as far as minimum quantum effects in Black hole physics, and by extension early universe cosmology.

References

[1]  Carroll, S. (2010)
www.preposterousuniverse4.com/blog/2010/04/28/the-universe-is-not-a-black-hole/
[2]  Beckwith, A. (2016) Gedanken Experiment for Refining the Unruh Metric Tensor Uncertainty Principle via Schwartz Shield Geometry and Planckian Space-Time with Initial Nonzero Entropy and Applying the Riemannian-Penrose Inequality and Initial Kinetic Energy for a Lower Bound to Graviton Mass (Massive Gravity). Journal of High Energy Physics, Gravitation and Cosmology, 2, 106-124.
http://dx.doi.org/10.4236/jhepgc.2016.21012
[3]  Gorbunov, D. and Rubakov, V. (2011) Introduction to the Theory of the Early Universe, Cosmological Perturbations and Inflationary Theory. World Scientific Publishing Pte. Ltd, Singapore.
http://dx.doi.org/10.1142/7873
[4]  Unruh, W.G. (1986) Why Study Quantum Theory? Canadian Journal of Physics, 64, 128- 130.
http://dx.doi.org/10.1139/p86-019
[5]  Unruh, W.G. (1986) Erratum: Why Study Quantum Gravity? Canadian Journal of Physics, 64, 128.
http://dx.doi.org/10.1139/p86-019
[6]  Giovannini, M. (2008) A Primer on the Physics of the Cosmic Microwave Background. World Press Scientific, Hackensack. http://dx.doi.org/10.1142/6730
[7]  Valev, D. (2010) http://arxiv.org/pdf/1008.0933.pdf
[8]  Ha, Y.K. (2014) An Underlying Theory for Gravity. Proceedings of the 7th International Conference on Gravity and Cosmology (ICGC2011), Journal of Physics: Conference Series, 484, Article ID: 012061. http://iopscience.iop.org/1742-6596/484/1/012061/pdf/1742-6596_484_1_012061.pdf http://dx.doi.org/10.1088/1742-6596/484/1/012061
[9]  Ng, Y.J. (2008) Spacetime Foam: From Entropy and Holography to Infinite Statistics and Nonlocality. Entropy, 10, 441-461. http://dx.doi.org/10.3390/e10040441
[10]  Kolb, E. and Turner, M. (1990) The Early Universe. Frontiers in Physics, Vol. 69, Chicago.
[11]  Mukhanov, Y. (2005) Physical Foundations of Cosmology. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511790553
[12]  Rovelli, C. and Vidotto, F. (2015) Covariant Loop Quantum Gravity, an Elementary Introduction to Quantum Gravity and Spinfoam Theory. Cambridge University Press, Cambridge.
[13]  Barrau, A., Rovelli, C. and Vidotto, F. (2014) Fast Radio Bursts and White Hole Signals.
http://arxiv.org/pdf/1409.4031v3.pdf
[14]  Beckwith, A.W. (2014) Analyzing Black Hole Super-Radiance Emission of Particles/Energy from a Black Hole as a Gedanken Experiment to Get Bounds on the Mass of a Graviton. Advances in High Energy Physics, 2014, Article ID: 230713. http://dx.doi.org/10.1155/2014/230713
[15]  http://www.helsinki.fi/~hkurkisu/cosmology/Cosmo6.pdf
[16]  http://www.helsinki.fi/~hkurkisu/cosmology/
[17]  http://pdg.lbl.gov/2013/reviews/rpp2012-rev-bbang-cosmology.pdf
[18]  Lloyd, S. (2002) Computational Capacity of the Universe. Physical Review Letters, 88, 237901.
http://arxiv.org/abs/quant-ph/0110141
http://dx.doi.org/10.1103/physrevlett.88.237901
[19]  Gasiorowitz, S. (1973) Quantum Physics. Wiley Interscience, Boston.
[20]  Haranas, I. and Gkigkitzis, I. (2014) The Mass of Graviton and Its Relation to the Number of Information According to the Holographic Principle. International Scholarly Research Notices, 2014, Article ID: 718251. http://www.hindawi.com/journals/isrn/2014/718251/
[21]  Ali, A.F. and Das, S. (2015) Cosmology from Quantum Potential. Physics Letters B, 741, 276-279. http://dx.doi.org/10.1016/j.physletb.2014.12.057
[22]  Padmanabhan, T. (2002) http://ned.ipac.caltech.edu/level5/Sept02/Padmanabhan/Pad1_2.html
[23]  Haggard, H.M. and Rovelli, C. (2014) Black Hole Fireworks: Quantum-Gravity Effects outside the Horizon Spark Black to White Hole Tunneling. http://arxiv.org/pdf/1407.0989v2.pdf
[24]  Goldhaber, A. and Nieto, M. (2010) Photon and Graviton Mass Limits. Reviews of Modern Physics, 82, 939-979.
http://arxiv.org/abs/0809.1003
http://dx.doi.org/10.1103/revmodphys.82.939

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133