Relevant contributions by Majorana regarding Compton scattering off free or bound electrons are
considered in detail, where a (full quantum) generalization of the Kramers-Heisenberg dispersion
formula is derived. The role of intermediate electronic states is appropriately pointed out in recovering
the standard Klein-Nishina formula (for free electron scattering) by making recourse to a
limpid physical scheme alternative to the (then unknown) Feynman diagram approach. For bound
electron scattering, a quantitative description of the broadening of the Compton line was obtained
for the first time by introducing a finite mean life for the excited state of the electron system. Finally,
a generalization aimed to describe Compton scattering assisted by a non-vanishing applied
magnetic field is as well considered, revealing its relevance for present day research.
References
[1]
Amaldi, E. (1929). Sulla Teoria Quantistica Dell’Effetto Raman. Rendiconti Accademia dei Lincei, 9, 876-881.
[2]
Bloch, F. (1934). Contribution to the Theory of the Compton-Line. Physical Review, 46, 674-687.
http://dx.doi.org/10.1103/PhysRev.46.674
[3]
Brown, L. M. (1993). Introduction: Renormalization 1930-1950. In L. M. Brown (Ed.), Renormalization. From Lorentz to Landau (and beyond). Springer. http://dx.doi.org/10.1007/978-1-4612-2720-5_1
[4]
Compton, A. H. (1923). A Quantum Theory of the Scattering of X-Rays by Light Elements. Physical Review, 21, 483-502.
http://dx.doi.org/10.1103/PhysRev.21.483
[5]
Compton, A. H. (1961). The Scattering of X Rays as Particles. American Journal of Physics, 29, 817-820.
http://dx.doi.org/10.1119/1.1937625
[6]
Compton, A. H., & Allison, S. K. (1935). X-Rays in Theory and Experiment. London: Macmillan.
[7]
Cooper, M. J. (1992). X-Ray Magnetic Scattering. Acta Physica Polonica, 82, 137-146.
http://dx.doi.org/10.12693/APhysPolA.82.137
[8]
De Gregorio, A., & Esposito, S. (2007). Teaching Theoretical Physics: The Cases of Enrico Fermi and Ettore Majorana. American Journal of Physics, 75, 781-790. http://dx.doi.org/10.1119/1.2746360
[9]
Di Grezia, E., & Esposito, S. (2008). Majorana and the Quasi-Stationary States in Nuclear Physics. Foundations of Physics, 38, 228-240. http://dx.doi.org/10.1007/s10701-007-9200-2
[10]
Dirac, P. A. M. (1926). Relativity Quantum Mechanics with an Application to Compton Scattering. Proceedings of the Royal Society of London A, 111, 405-423. http://dx.doi.org/10.1098/rspa.1926.0074
[11]
Dirac, P. A. M. (1927a). The Compton Effect in Wave Mechanics. Proceedings of Cambridge Philosophical Society, 23, 500-507. http://dx.doi.org/10.1017/S0305004100011634
[12]
Dirac, P. A. M. (1927b). The Quantum Theory of the Emission and Absorption of Radiation. Proceedings of the Royal Society of London A, 114, 243-265. http://dx.doi.org/10.1098/rspa.1927.0039
[13]
Du Mond, J. W. M. (1933). The Linear Momenta of Electrons in Atoms and in Solid Bodies as Revealed by X-Ray Scattering. Reviews of Modern Physics, 5, 1-33. http://dx.doi.org/10.1103/RevModPhys.5.1
[14]
Esposito, S. (2008). Ettore Majorana and His Heritage Seventy Years Later. AnnalenderPhysik (Leipzig), 17, 302-318.
http://dx.doi.org/10.1002/andp.200810296
[15]
Esposito, S. (2009). La cattedra vacante—Ettore Majorana, ingegno e misteri. Naples: Liguori.
[16]
Esposito, S. (2014). The Physics of Ettore Majorana. Cambridge: Cambridge University Press.
[17]
Esposito, S., Majorana Jr., E., van der Merwe, A., & Recami, E. (2003). Ettore Majorana—Notes on Theoretical Physics. Dordrecht: Kluwer.
[18]
Esposito, S., Recami, E., van der Merwe, A., & Battiston, R. (2008). Ettore Majorana—Unpublished Research Notes on Theoretical Physics. Heidelberg: Springer.
[19]
Fermi, E. (1932). Quantum Theory of Radiation. Reviews of Modern Physics, 4, 87-132.
http://dx.doi.org/10.1103/RevModPhys.4.87
[20]
Franz, W. (1938). Die Streuung von Strahlung am magnetischen Elektron. Annalen der Physik (Berlin), 425, 689-707.
http://dx.doi.org/10.1002/andp.19384250802
[21]
Gonthier, P. L., Harding, A. K., Baring, M. G., Costello, R. M., & Mercer, C. L. (2000). Compton Scattering in Ultrastrong Magnetic Fields: Numerical and Analytical Behavior in the Relativistic Regime. The Astrophysical Journal, 540, 907-922.
http://dx.doi.org/10.1086/309357
[22]
Gordon, W. (1926). Der Comptoneffekt nach der Schrödingerschen Theorie. Zeitschrift für Physik, 40, 117-133.
http://dx.doi.org/10.1007/BF01390840
[23]
Heisenberg, W., & Pauli, W. (1929). Zur Quantendynamik der Wellenfelder. Zeitschrift für Physik, 56, 1-61.
http://dx.doi.org/10.1007/BF01340129
[24]
Klein, O., & Nishina, Y. (1929). über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac. Zeitschrift für Physik, 52, 853-868. http://dx.doi.org/10.1007/BF01366453
[25]
Kramers, H. A., & Heisenberg, W. (1925). über die Streuung von Strahlung durch Atome. Zeitschrift für Physik, 31, 681- 708. http://dx.doi.org/10.1007/BF02980624
[26]
Lacki, J., Ruegg, H., & Telegdi, V. L. (1999). The Road to Stueckelberg’s Covariant Perturbation Theory as Illustrated by Successive Treatments of Compton Scattering. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 30, 457-518. http://dx.doi.org/10.1016/S1355-2198(99)00021-0
[27]
Majorana, E. (1932). Atomi orientati in campo magnetico variabile. Il Nuovo Cimento, 9, 43-50.
http://dx.doi.org/10.1007/BF02960953
[28]
Pais, A. (1986). Inward Bound: Of Matter and Forces in the Physical World. Oxford: Clarendon Press.
[29]
Peskin, M. E., & Schroeder, D. V. (1995). An Introduction to Quantum Field Theory. Boston, MA: Addison-Wesley.
[30]
Recami, E. (1987). Il caso Majorana—Epistolario, Documenti, Testimonianze. Firsteditions (1987, 1991), Milan: Mondadori; lastedition (2011), Rome: Di Renzo.
[31]
Ross, P. A., & Kirkpatrick, P. (1934). Effect of Electron Binding upon the Magnitude of the Compton Shift. Physical Review, 46, 668-673. http://dx.doi.org/10.1103/PhysRev.46.668
[32]
Schweber, S. S. (1994). Q.E.D. and the Men Who Made It. Princeton, NJ: Princeton University Press.
[33]
Seipt, D., & Kampfer, B. (2014). Laser-Assisted Compton Scattering of X-Ray Photons. Physical Review A, 89, 023433.
http://dx.doi.org/10.1103/PhysRevA.89.023433
[34]
Stuewer, R. H. (1975). The Compton Effect: Turning Point in Physics. New York: Science History Publications.
[35]
Tamm, I. (1930). über die Wechselwirkung der freien Elektronen mit der Strahlung nach der Diracsehen Theorie des Elektrons und nach der Quantenelektrodynamik. Zeitschrift für Physik, 62, 545-568. http://dx.doi.org/10.1007/BF01339679
[36]
Waller, I. (1929). Die Streuung kurzwelliger Strahlung durch Atome nach der Diracschen Strahlungstheorie. Zeitschrift für Physik, 58, 75-94. http://dx.doi.org/10.1007/BF01347932
[37]
Waller, I. (1930). Die Streuung von Strahlung durch gebundene und freie Elektronen nach der Diracschen relativistischen Mechanik. Zeitschrift für Physik, 61, 837-851. http://dx.doi.org/10.1007/BF01340210
[38]
Waller, I., & Hartree, D. R. (1929). On the Intensity of Total Scattering of X-Rays. Proceedings of the Royal Society of London A, 124, 119-142. http://dx.doi.org/10.1098/rspa.1929.0101
[39]
Weinberg, S. (1995). The Quantum Theory of Fields—Foundations (Vol. I). Cambridge: Cambridge University Press.
http://dx.doi.org/10.1017/CBO9781139644167
[40]
Weisskopf, V., & Wigner, E. (1930). Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie. Zeitschrift für Physik, 63, 54-73. http://dx.doi.org/10.1007/BF01336768
[41]
Wentzel, G. (1927a). Zur Theorie des Comptoneffekts. Zeitschrift für Physik, 43, 1-8. http://dx.doi.org/10.1007/BF01397225
[42]
Wentzel, G. (1927b). Zur Theorie des Comptoneffekts. II. Zeitschrift für Physik, 43, 779-787.
http://dx.doi.org/10.1007/BF01397247
[43]
Yang, C. N. (2008). The Klein-Nishina Formula and Quantum Electrodynamics. In Nishina Memorial Foundation (Ed.), Nishina Memorial Lectures. Lecture Notes in Physics, Vol. 746 (pp. 393-397). Japan: Springer.
http://dx.doi.org/10.1007/978-4-431-77056-5_18