We investigate the resonance modes of gold nanorods on an Indium tin
oxide (ITO) coated glass substrate using spectroscopic ellipsometry. The unit
cell of the structure investigated is composed of two gold nanorods with
differing lengths. In such a structure, we can excite the bright resoance and
the dark resonance modes. Numerical simulation of the gold nanorod on substrate
was performed with the bright resonance mode at 825.0 nm and the dark resonance
mode at 1107.1 nm respectively. Using spectroscopic ellipsometry we optically
characterize the fabricated gold nanostructure, with the bright resonance mode
at 700.0 nm and the dark resonance mode at 1350.0 nm respectively. The
experimental results from ellipsometry show a good agreement with the results
from simulation.
References
[1]
Taylor, A.B., Michaux, P., Mohsin, A.S. and Chon, J.W. (2013) Electron-Beam Lithography of Plasmonic Nanorod Arrays for Multilayered Optical Storage. Optics Letters, 38, 3969-3972.
[2]
Taylor, A.B., Michaux, P., Mohsin, A.S.M. and Chon, J.W.M. (2014) Electron-Beam Lithography of Plasmonic Nanorod Arrays for Multilayered Optical Storage. Optics Express, 22, 13234-13243. http://dx.doi.org/10.1364/OE.22.013234
[3]
Cinel, N.A., Bütün, S. and Özbay, E. (2012) Electron Beam Lithography Designed Silver Nano-Disks Used as Label Free Nano-Biosensors Based on Localized Surface Plasmon Resonance. Optics Express, 20, 2587-2597. http://dx.doi.org/10.1364/OE.20.002587
[4]
DeRose, G.A., Zhu, L., Poon, J.K.S., Yariv, A. and Scherer, A. (2007) Electron-Beam Lithography Techniques for Micro and Nano-Scale Surface Structure Current Injection Lasers. Conference on Lasers and Electro-Optics (CLEO), Baltimore, 6-11 May 2007, 1-2. http://dx.doi.org/10.1109/cleo.2007.4452835
[5]
Vieu, C., Carcenac, F., Pépin, A., Chen, Y., Mejias, M., Lebib, A., Manin-Ferlazzo, L., Couraud, L. and Launois, H. (2000) Electron Beam Lithography: Resolution Limits and Applications. Applied Surface Science, 164, 111-117. http://dx.doi.org/10.1016/S0169-4332(00)00352-4
[6]
Bergmair, I., Dastmalchi, B., Bergmair, M., Saeed, A., Hilber, W., Hesser, G., Helgert, C., Pshenay-Severin, E., Pertsch, T., Kley, E.B., Hübner, U., Shen, N.H., Penciu, R., Kafesaki, M., Soukoulis, C.M., Hingerl, K., Muehlberger, M. and Schoeftner, R. (2011) Single and Multilayer Metamaterials Fabricated by Nanoimprint Lithography. Nanotechnology, 22, Article ID: 325301.
[7]
Oates, T.W.H., Wormeester, H. and Arwin, H. (2011) Characterization of Plasmonic Effects in Thin Films and Metamaterials Using Spectroscopic Ellipsometry. Progress in Surface Science, 86, 328-376. http://dx.doi.org/10.1016/j.progsurf.2011.08.004
[8]
Ahn, S.H. and Guo, L.J., (2009) Large-Area Roll-to-Roll and Roll-to-Plate Nanoimprint Lithography: A Step toward High-Throughput Application of Continuous Nanoimprinting. ACS Nano, 3, 2304-2310. http://dx.doi.org/10.1021/nn9003633
[9]
Jeyaram, T., Verellen, N., Zheng, X., Silhanek, A.V., Hojeiji, M., Terhalle, B., Ekinci, Y., Valev, V.K., Vandenbosch, G.A.E. and Moshchalkov, V.V. (2013) Rendering Dark Modes Bright by Using Asymmetric Split Ring Resonators. Optics Express, 21, 15464-15474. http://dx.doi.org/10.1364/OE.21.015464
[10]
Cao, W., Singh, R.., Al-Naib, I.A.I., He, M., Taylor, A.J. and Zhang, W. (2012) Low-Loss Ultra-High-Q Dark Mode Plasmonic Fano Metamaterials. Optics Letters, 37, 3366-3368. http://dx.doi.org/10.1364/OL.37.003366
[11]
Papasimakis, N., Fu, Y.H., Fedotov, F.A., Prosvirnin, S.L., Tsai, D.P. and Zheludev, N.I. (2009) Metamaterial with Polarization and Direction Insensitive Resonant Transmission Response Mimicking Electromagnetically Induced Transparency. Applied Physics Letters, 94, 211902-211904. http://dx.doi.org/10.1063/1.3138868
[12]
Singh, R., Al-Naib, I.A.I., Koch, M. and Zhang, W. (2011) Sharp Fano Resonances in THz Metamaterials. Optics Express 19, 6314-6319. http://dx.doi.org/10.1364/oe.19.006312
[13]
Christ, A., Martin, O.J.F., Ekinci, Y., Gippius, N.A. and Tikhodeev, S.G. (2008) Symmetry Breaking in a Plasmonic Metamaterial at Optical Wavelength. Nano Letters, 8, 2171-2175. http://dx.doi.org/10.1021/nl0805559
[14]
Smith, D.R., Schultz, S., Markos, P. and Soukoulis, C.M. (2002) Determination of Effective Permittivity and Permeability of Metamaterials from Reflection and Transmission Coefficients. Physical Review B, 65, 195104. http://dx.doi.org/10.1103/PhysRevB.65.195104
[15]
Fujiwara, H. (2003) Spectroscopic Ellipsometry: Principles and Applications. John Wiley & Sons Ltd., Chichester.
[16]
Tompkins, H.G. and Irene, E.A. (2005) Handbook of Ellipsometry. William Andrew, New York. http://dx.doi.org/10.1007/3-540-27488-X
[17]
Oates, T.W.H., Dastmalchi, B., Isic, G., Tollabimazraehno, S., Helgert, C., Pertsch, T., Kley, E., Verschuuren, M.A., Bergmair, I., Hingerl, K. and Hinrichs, K. (2012) Oblique Incidence Ellipsometric Characterization and the Substrate Dependence of Visible Frequency Fishnet Metamaterials. Optics Express, 20, 11166-11177. http://dx.doi.org/10.1364/OE.20.011166
[18]
Khosroabadi, A.A., Gangopadhyay, P., Cocilovo, B., Makai, L., Basa, P., Duong, B., Thomas, J. and Norwood, R.A. (2013) Spectroscopic Ellipsometry on Metal and Metal-Oxide Multilayer Hybrid Plasmonic Nanostructures. Optics Express, 38, 3969-3972. http://dx.doi.org/10.1364/ol.38.003969
[19]
Toudert, J. (2013) Spectroscopic Ellipsometry for Active Nano and Metamaterials. Nanotechnology Reviews, 3, 223-245.
[20]
Gong, J., Dai, R., Wang, Z. and Zhang, Z. (2015) Thickness Dispersion of Surface Plasmon of Ag Nano-Thin Films: Determination by Ellipsometry Iterated with Transmittance Method. Scientific Reports, 5, Article Number: 9279. http://dx.doi.org/10.1038/srep09279
[21]
Chou, S.Y., Krauss, P.R. and Renstrom, P.J. (1996) Imprint Lithography with 25-Nanometer Resolution. Science, 272, 85-87. http://dx.doi.org/10.1126/science.272.5258.85